
Reference Manual for

SDK and Plugin Interface V1.5.2

 of the
Synthesis Sync Engine

V3.0 / V3.1 / V3.2
20-Jan-2009

 © 2004 - 2009 by Synthesis AG

Page 2

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

This manual was written for Synthesis SyncML Engine V3.0 / V3.1 / V3.2

This manual and the Synthesis Sync Server/Client software described in it are copyrighted, with
all rights reserved. This manual and the Synthesis Sync Server/Client software may not be copied,
except as otherwise provided in your software license or as expressly permitted in writing by
Synthesis AG (http://www.synthesis.ch/).

Synthesis SyncML Engine uses parts of the following software:

expat - XML parser - http://sourceforge.net/projects/expat
Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

SyncML toolkit - http://sourceforge.net/projects/syncml-ctoolkit/
This product includes software developed by The SyncML Initiative.
Copyright (c) 2000 Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., LTD, Moto-
rola, Nokia, Palm, Inc., Psion, Starfish Software. All rights reserved.

zlib compression library - http://www.zlib.net/
 zlib software copyright © 1995-2004 Jean-loup Gailly and Mark Adler

SQLite 3 database engine - http://www.sqlite.org/

PCRE Library - http://www.pcre.org/license.txt
Copyright (c) 1997-2007 University of Cambridge

The project files to create the SySync SDK plug-ins are using the following software:

C/C++ CodeWarrior compiler environment - http://www.metrowerks.com
Copyright © 2005 Metrowerks, a Freescale company. All rights reserved.

Visual Studio - http://www.microsoft.com
Copyright © 2005 Microsoft Corporation. All rights reserved.

XCode - http://developer.apple.com/tools/xcode
Copyright © 1999 – 2007 Apple Inc. All rights reserved.

Disclaimer
Use of the Synthesis Sync Server/Client software and other software accompanying your license (the "Software")
and its documentation is at your sole risk. The Software and its documentation (including this manual), and software
maintainance by Synthesis AG, if applicable, are provided "AS IS" and without warranty of any kind and Synthesis
AG EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LI-
MITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, TITLE, AND NON-INFRINGEMENT. IN NO EVENT SHALL SYNTHESIS AG BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.synthesis.ch/
http://sourceforge.net/projects/expat
http://sourceforge.net/projects/syncml-ctoolkit/
http://www.zlib.net/
http://www.sqlite.org/
http://www.pcre.org/license.txt
http://www.metrowerks.com/
http://www.microsoft.com/
http://developer.apple.com/tools/xcode/

Page 3

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

Contents

1. Introduction ...5
2. Overview ..6
3. Distribution Files..8
4. SySync DBApi SDK description...10

4.1 How to write a database plugin ? .. 10
4.2 Module Handling ... 10
4.3 Session Handling .. 11
4.4 Datastore Handling.. 13

4.4.1 The “open” section.. 13
4.4.2 The “admin read” section.. 14
4.4.3 The “read” section... 14
4.4.4 The “update” section... 15
4.4.5 The “admin write” section ... 16
4.4.6 The “general” section.. 16
4.4.7 The “close” section ... 17

4.5 Callback calls .. 17
4.6 The global context ... 18
4.7 The OceanBlue / SnowWhite adapter ... 19

5. SySync UIApi SDK description..20
5.1 Connecting the SyncML core library via UIApi .. 20
5.2 Using a SyncML Client Library via UIApi... 21

5.2.1 Preparation for initialisation .. 21
5.2.2 Engine Init... 22
5.2.3 Acessing Settings ... 22

5.2.3.1 Preparations before accessing settings profiles 23
5.2.3.2 Editing Settings .. 24

5.2.4 Running Sync Sessions.. 25
6. Setup Guide..28

6.1 Plug-in System for C/C++.. 28
6.2 Plug-in System for Java .. 29
6.3 Plug-in System for C# ... 29
6.4 Plug-in module XML configuration... 30
6.5 Module naming convention ... 30
6.6 Plugin_Info program.. 32
6.7 UIApi C# interface ... 33

7. Change History ..34
7.1 Changes since SDK V1.0.0.2.. 34
7.2 Changes since SDK V1.3.0... 35
7.3 Changes since SDK V1.4.0... 36
7.4 Changes since SDK V1.5.0... 36

8. DBApi Interface description..37
8.1 Function overview ... 37
8.2 Function Documentation ... 38

Page 4

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

9. UIApi Interface description...53
9.1 Functions in the UI_Call_In call-in structure .. 53
9.2 TEngineModuleBase Class Reference.. 54

9.2.1 Public Member Function Overview ... 54
9.2.2 Member Function Documentation... 56

9.3 Settings keys supported in SyncML Client Engine .. 63
9.3.1 Global settings keys - accessed using OpenKeyByPath() 63
9.3.2 Session local settings/values, accessed using OpenSessionKey() 67

10. Error codes...68
10.1 SyncML Status Codes... 68
10.2 Internal Error Codes .. 69

Page 5

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

1. Introduction

Thank you for choosing Synthesis Sync Server/Client as your SyncML solution. It provides
you with a very efficient compliant SyncML engine with many advanced features and especially a
high configurability.

Synthesis Sync Server/Client exists in different versions for different database interfaces.

This manual covers Synthesis SyncML products supporting custom plugins for interfacing with
the database (DB Api), like the Synthesis SyncML Servers in the PRO version as well as Synthe-
sis SyncML library products which come as a loadable library (.dll, .so, .dylib) and have a API to
access the SyncML functionality from a client application (UI Api) .
Custom plugins and applications can be written in C/C++, C# and Java as well as in any pro-
gramming language capable of the C-style calling conventions (e.g. Borland Delphi).

This manual contains the reference for the Software Development Kit (SDK) required to create
both custom database plugins and applications.

This manual does not cover configuration of the SyncML engine itself. Please refer to the
SySync_config_reference.pdf manual which is part of the SDK package and most server product
packages.

Page 6

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

2. Overview

Synthesis AG makes their SyncML engine functionality available for customized database plug-in
adapters as a Software Development Kit (SDK). Synthesis Plugin technology allows the custo-
mer to develop data base adapters or user interfaces without the need of understanding the de-
tails of the SyncML standard. It's an ideal division of work between Synthesis and the customer's
project: Synthesis delivers a scalable, high performance SyncML OMA DS 1.2 engine, which is
interoperability-tested against a huge variety of SyncML devices on the market. The customer
only needs the specific knowledge to access his own data base framework or his own user inter-
face which can be written in several programming languages.
A small interface with only 48 + 23 well documented and easy-to-use functions is the bridge of
interaction. All SyncML protocol details are hidden.

There are mainly two sections of the SDK:
• The data base interface (DBApi) for writing data base plugins (see chapter 4).
• The user interface (UIApi) for writting user interfaces (see chapter 5).

Both sections can be used completely independently, though some interface files are shared.

Customer‘s
DB Plugin B

Customer‘s
application

with user interface

Synthesis
SySync
Engine

Customer‘s
DB Plugin A

Synthesis
SySync
Engine

DBApi

UIApi

Page 7

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

• Programming interface for C/C++.
• A plug-in for access to Java thru JNI (Java Native Interface) is also available.
• The UI and DB interfaces for C# are available (since version V1.4.0).
• The UI and DB interfaces for Delphi are available (since version V1.4.0).
• Other interfaces will be implemented on request.
• „Ready to use“ example code for a demo database module in C, a „textdb“ interface in

C++, the OceanBlue/SnowWhite example adapter in C++ and a demo module in Java,
C# and Delphi are part of the package to demonstrate the DBApi (see chapter 4).

• „Ready to use“ complete SyncML client examples for Mozilla sunbird calendar for Win-
dows/Delphi, MacOSX/Cocoa/XCode and Linux/Gtk/Glide are included to demon-
strate the UIApi (see chapter 5). Several small sample applications to demonstrate specific
aspects of the UIApi are also available.

• Windows, Linux and MacOSX target platforms are supported at this time. For deve-
lopment, Metrowerks' CodeWarrior project files are available for all these three plat-
forms, as well as Visual Studio 2005 vcproj file for Windows, XCode project file for Mac
OSX and a makefile for Linux.

• Versions for Windows Mobile, SymbianOS, PalmOS, iPhone and eventually Android are
planned for the future.

• The code can be compiled by the customer as an application for the UI application and as
a Dynamic Link Library (DLL) for the DB Api plugins.

• Multiple plug-ins can be used in parallel at the same time.
• The SDK allows multi-threading to support multiple simultaneous sessions of the

SyncML server.
• Easy configuration via the main XML configuration file
• There is no specific version of the Synthesis SyncML Server/Client with the plug-in

technology, all future servers will contain it. Only the license decides, whether the func-
tionality can be used or not.

• The Synthesis demo server and client contain the current version of „SDK_textdb“ as a
built-in plug-in.

With the SySync DBApi SDK, the customer is able to create plug-ins, which will be called di-
rectly by the Synthesis SyncML engine. The SyncML engine acts as a master: It makes subroutine
calls into the plugin DLL. Each routine must return an error status, which will be handled by the
engine. The main three blocks are the Module, the Session and the Datastore handling. These
three blocks are normally kept within one DLL, but they can be separated into different DLLs as
well. The description of each routine with several programming hints can be found in the inter-
face definition file „sync_dbapi.h“.

The access to all blocks is context based, so at the beginning a routine „Create_XXX“ will be
called, which has to return a unique identifier which will be used for each subsequent call of this
context. The „Delete_XXX“ will remove this context again later. Variables which are local within
such a context must be stored within this environment during its lifetime. This can be done either
by using the context identifier as pointer to a local structure or using it as an index.

With the SySync UIApi SDK, the customer can write his own user interface and communication
code (in the current version for SyncML available for client applications) and is calling the
SyncML engine for initialisation, syncing, message reading/writing and parameter setup.
In this configuration, the UI application is usually a program which acts as master and is using
the SyncML engine as shared (or linked) library.

Page 8

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

3. Distribution Files

The distribution media (normally a .ZIP archive) contains the following files
(NOTE: depending on the version you have, not all of the listed files will be included):

CodeWarrior, Visual Studio
project files / makefile

Sources

engine_defs.h
generic_types.h
syerror.h
sync_include.h
sync_dbapidef.h
sync_dbapi.h

admindata.h / .cpp
blobs.h / .cpp
dbitem.h / .cpp
SDK_util.h / .c
SDK_support.h / .cpp
stringutil.h / .cpp
timeutil.h / .cpp
enginemodulebase.h / .cpp
enginemodulebridge.h / .cpp

DLL

SDK.def

dbapi_DLL.lib

UI_Appli-
cations

UI_app_setting.cpp

UI_util.h / .cpp

DB_Interfaces

 sync_dbapi_demo.c
DLL/target_options.h

 sync_dbapi_text.cpp
DLL/target_options.h

....
sysync_SDK_linux.mcp
sysync_SDK_linux.mk
sysync_SDK_win.mcp
*_visual.vcproj
sysync_SDK_mac.mcp

 (some of these files,
depending on the platform)

UI application
 example

 Example plug-in modules

DLL core

SySync SDK
C / C++ package

oceanblue.h / .cpp
snowwhite.h / .cpp

myadapter.h

Page 9

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

The JNI / Java files can be found at:

Alternatively the same classes are available with a „sysync“ package. The equivalent files can be
found in the „sysync“ sub directory.

There are other subdirectories with specific projects examples for C#, Delphi, XCode (sunbird
client example),

SySync SDK
for Java

Java

SDK_javadb.java
SDK_javadb.class

uiapp.java
uiapp.class

VAR_boolean.class
VAR_byteArray.class
VAR_short.class
VAR_int.class
VAR_String.class
DB_Callback.class
ItemID.class
MapID.class

ModuleContext.class
SessionContext.class
DStoreContext.class

JCallback.class
JCallback.h

Page 10

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

4. SySync DBApi SDK description

The main three blocks of the SySync Software Development Kit (SDK) are the Module, the
Session and the Datastore handling. These three blocks are normally kept within one DLL, but
they can be separated into different DLLs as well. The description of each routine with several
programming hints can be found in the interface definition file „sync_dbapi.h“ and in chapter 7
of this manual. Here is an overwiew over the routines of these three main blocks:

4.1 How to write a database plugin ?

After having chosen the programming language for the plugin (C, C++, C#, Java, Delphi), the
best starting point is to take the dbapi example and add the specific functionality. Not all functi-
ons must be implemented at all or right from the beginning, replacement can be done step by
step. The calling direction is always from SyncML engine to the plugin module and returning
afterwards to the SyncML engine (usually with an error code). The DBApi plugin has identical
structure for SyncML servers and clients, so the same plugin module can be used on both sides.
For C++ programming, a good starting point is the OceanBlue / SnowWhite adapter, see chap-
ter 4.7.

It is recommended to use the callback debug output system, which is already part of all example
files. So the DBApi plugin will write the flow information directly into the log file.

A good starting point is the implementation and adaption of the module context which must
return information of the plugin module to the engine. All basic information is already imple-
mented at the example files.

In a second phase the session context is needed for assigning user and devices, here a minimum
setup for login handling is requested.

The most important part is the datastore context handling where the user data will be read and
written. The admin section needn’t to be implemented for every database plugin, as it can be
handled by a different module as well (the config file must contain the appropriate info for this).

A detailed descriptions of these context systems is described in the next chapters.

4.2 Module Handling

- Module_CreateContext
- Module_Version
- Module_Capabilities
- Module_PluginParams
- Module_DisposeObj *)
- Module_DeleteContext

*) Not implemented for JNI and C#, because Java and C# run their own garbage collection

Page 11

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

This is the set of routines for the Plug-In access on the module level. When the SyncML engine
connects to a Plug-In module, „Module_CreateContext“ will be called first.When disconnecting,
„Module_DeleteContext“ will be called as the final call. The SyncML engine will create a module
context for the sessions and one for each datastore admin and data section.
„Module_CreateContext“ can either create a new context or share a global module context
among session and datastores. Module context „0“ is reserved.

„Module_Version“ and „Module_Capabilities“ inform the engine, what is currently supported
within the plug-in module. With „Module_PluginParams“ the SyncML engine informs the plug-
in module about <plugin_params> of the XML config file.
The plugin must be able to return „Module_Version“ of context „0“ without any preceding
„Module_CreateContext“. The module version cannot be defined by the plugin programmer, as
it contains compatibility information for the engine. The only thing the user can define is the
build number 0..255.

„Module_Capabilities“ can return NoField identifiers (example: „plugin_sessionauth:no“)
which allows to remove some DLL functions completely, not even the entry points must be
available then. This is also true for the Java environment where these methods needn’t to be im-
plemented, if switched off. For C# all functions must be available.

Supported NoField sections:
- Plugin_Session „plugin_se:no“ (the whole session)
- Plugin_SE_Adapt „plugin_sessionadapt:no“ (session adaptitem)
- Plugin_SE_Auth „plugin_sessionauth:no“ (session login)
- Plugin_DV_Admin „plugin_deviceadmin:no“ (session admin)
- Plugin_DV_DBTime „plugin_dbtime:no“ (session „GetDBTime“)

- Plugin_Datastore „plugin_ds:no“ (the whole datastores)
- Plugin_DS_Admin „plugin_datastoreadmin:no“ (admin part)
- Plugin_DS_Data „plugin_datastore:no“ (data part)
- Plugin_DS_Blob „plugin_datablob:no“ (BLOB support)
- Plugin_DS_Adapt „plugin_dataadapt:no“ (data adaptitem)

The plugin_info program, which is part of the SDK package, shows the feedback about these
informations.

NOTE: The admin part requires also BLOB support for SyncML 1.2. That’s because an incom-
plete item during suspend/resume will be stored as BLOB.

„Module_DisposeObj“ asks for deallocation of memory (which has been allocated within the
module to get the capabilities string).

4.3 Session Handling

These routines handle the session context at a plug-in module. Main tasks of this blocks are de-
vice info & nonce handling and the user authentification (login). The return values of this block
will be used later to access the datastores.

Page 12

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

NOTE: The Session_PasswordMode mode must be in line with the config file’s authentification
settings.

Multiple sessions can run in parallel, using the concept of multi-threading at the SyncML engine.
Therefore all operations MUST refer only to the <sContext> variable (which must be created in
the plug-in function „Session_CreateContext“ and deleted with „Session_DeleteContext“).
The SyncML engine will never call a context again after „Session_DeleteContext“, it assumes that
all allocated resources of the session are removed there.

Interference between sessions should be avoided or must be made thread-safe. Even the thread
of a running session can change: The SyncML engine will give a notification before such a change
by calling the routine „Session_ThreadMayChangeNow“. As the name says, it may change (but it
must not). If this information is not needed for the plugin module, it can be implemented empty.

- Session_CreateContext
- Session_AdaptItem 1)

- Session_CheckDevice 2)
- Session_GetNonce 2)
- Session_SaveNonce 2)
- Session_SaveDeviceInfo 2)

- Session_GetDBTime 3)

- Session_PasswordMode 4)
- Session_Login 4)
- Session_Logout 4)

- Session_ThreadMayChangeNow
- Session_DisposeObj 5)
- Session_DispItems 6)
- Session_DeleteContext

1) Needn’t to be implemented with „plugin_sessionadapt:no“ at Module_Capabilities

2) These routines will be called only, if <api_deviceadmin> is set to yes at the config
 Needn’t to be implemented with „plugin_deviceadmin:no“ at Module_Capabilities

3) Needn’t to be implemented with „plugin_dbtime:no“ at Module_Capabilities

4) These routines will be called only, if <api_sessionauth> is set to yes at the config
 Needn’t to be implemented with „plugin_sessionauth:no“ at Module_Capabilities

5) Not implemented for JNI and C#, because Java and C# run their own garbage collection
6) Will never be called by the SyncML engine; for debug purposes only.

Page 13

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

4.4 Datastore Handl ing

A datastore will always be accessed within a session. Multiple datastore accesses within a session
will not run sequentially, they can even run in parallel to other sessions. The datastore handling
has always the same flow: open – [admin read] - read – update – [admin write] - close. Therefore
the datastore handling is divided into several sub sections. Detailed description can be found at
„sync_dbapi.h“.

NOTE: For each datastore two separate contexts will be opened for the admin and the data
part. This is because they can be handled by two separate plugin modules or one of them as
ODBC, the other one as plugin. So they will be handled separately even if they are using the same
plugin module.To distinguish which one is which, the engine can be configured (by returning
„ADMIN_Info:yes“ with „Module_Capabilities“) to add the word „ ADMIN“ to <aCon-
textName> of „CreateContext“ when called as admin context.

4.4.1 The “open” sect ion
The „open“ section will „Create_Context“ and provides context and filter options to the
SyncML engine.

 - CreateContext
 - ContextSupport
 - FilterSupport"

NOTE: „ContextSupport“ and „FilterSupport“ calls will appear usually at the beginning of the
data store handling, but under certain conditions they can be called at any time during the data-
store handling. Multiple calls are possible.

Example:
FilterContext call 1: daterangestart:20070219T191809Z

daterangeend:20070619T191809Z

FilterContext call 2: staticfilter:
dynamicfilter:
invisiblefilter:F.SYNCLVL:=0|F.SYNCLVL*=E

FilterContext call 1 will pass the /dr(-before/after) conditions (as ISO8601 time) to the plugin.
The field names are predefined, for details see also the filter section at the Synthesis Config Refe-
rence manual. The plugin should return 2 (for 2 supported fields), if both values are supported
and fully considered. It should return 0, if they are not or partly considered. E.g. a plugin might
be able to filter only on date resolution, so it can make this raw prefiltering. By returning 0, the
engine will make still the fine filtering.

FilterContext call 2 will switch off staticfilter and dynamicfilter and will try to install the invisible-
filter. If the plugin supports invisible filtering, it should return the value 3 (for 3 supported fields).
datarangestart/datarangeend are not affected with the 2nd call, so they are still active.

Page 14

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

4.4.2 The “admin read” section
The „admin read“ section allows to handle the map tables. Detailed description can be found in
„sync_dbapi.h“. All routines of this section can be implemented empty with return code
DB_Forbidden = 403, if the admin tables will be handled by the SyncML engine itself.
There is even a way to remove these routines completely.

NOTE: For Windows, the according entry points must be removed from the „.def“ file.

- LoadAdminData
- ReadNextMapItem

These routines will be called only, if <plugin_datastoreadmin> is set to yes in the config.
It needn’t to be implemented with „plugin_datastoreadmin:no“ at Module_Capabilities

NOTE: Some of the Synthesis SyncML (client) engines have the admin part built-in, so it can-
not be redirected to a plugin module for these cases.

4.4.3 The “read” section
The „read“ section starts with „StartDataRead“ and ends with „EndDataRead“.

- StartDataRead
- ReadNextItem *)
- ReadNextItemAsKey *)
- ReadItem *)
- ReadItemAsKey *)
- ReadBlob **)
- EndDataRead

*) Needn’t to be implemented with „plugin_datastore:no“ at Module_Capabilities
**) Needn’t to be implemented with „plugin_datablob:no“ at Module_Capabilities

„ReadNextItem“/ „ReadItem“: <aItemData> returns the data, formatted as multiline,
where <aa> / <cc> are the identifiers and <bb> / <dd> the data fields:
The field separator generated by the engine is <CRLF> = \r\n = 0x0d 0x0a..
(The engine is able to handle <CR> only, as well as <LF> only as separator)

aa:bb<CRLF>cc:dd[<CRLF>]

The identifiers are either assigned to the fieldmap names, or just numbered by an index,
if automap indexasname is true:

Example:
<aItemData>:

0:Joe<CRLF>1:Smith<CRLF>2:New York<CRLF>

with XML config file entry:
<fieldmap fieldlist="calendar">

 <automap indexasname="true"/>
</fieldmap>

Page 15

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

The „SDK_textdb“ sample is expecting indexasname=“true“, because the fieldmap names will
not be stored, so the ordering of the config file’s fieldmap determines the index assignment.
NOTE: Adding fields in-between or changing the ordering of fields will make the system in-
compatible to already existing TDB_*.txt files, when indexasname is true.

The data fields can be multiline, so carriage returns <CR> must be escaped using „\r“, linefeeds
<LF> must be escaped using „\n“. To allow this, also backslashes themselves must be escaped
(using „\\“). Double quotes and ctrl characters must be escaped as well. For details see the string
conversion routines at „stringutil.cpp“, which is part of the SDK package.

There are two extensions to this syntax:
• BLOBs: For binary large object blocks the field contains only a reference to the BLOB

identifier which will be read and written with ReadBlob/WriteBlob.
Syntax: aa;BLOBID=xyz where <xyz> is the name of the BLOB.

• Arrays: For array fields a syntax with index will be used
Syntax: aa[index]:bb

„ReadNextItemAsKey“ and „ReadItemAsKey“ are equivalent to „ReadNextItem“/ „ReadItem“,
but they are using an appPointer <aItemKey> instead of transferring the <aItemData>. They
will be used instead by the SyncML engine, if „ITEM_AS_KEY:true“ is returned with Modu-
le_Capabilities and at least SDK 1.4.0 is used. These keys are completely opaque for the plugin
module. Their attached context must be read or written with the GetValue/SetValue callback
functions.

4.4.4 The “update” section
The „update“ section starts with „StartDataWrite“ and ends with „EndDataWrite“. Read com-
mands (ReadItem / ReadBlob) can appear here as well.

- StartDataWrite
- InsertItem *)
- InsertItemAsKey *)
- FinalizeLocalID
- UpdateItem *)
- UpdateItemAsKey *)
- MoveItem
- DeleteItem
- DeleteSyncSet
- WriteBlob **)
- DeleteBlob **)
- EndDataWrite

*) Needn’t to be implemented with „plugin_datastore:no“ at Module_Capabilities
**) Needn’t to be implemented with „plugin_datablob:no“ at Module_Capabilities

„InsertItemAsKey“ and „UpdateItemAsKey“ are equivalent to „InsertItem“/ „UpdateItem“, but
they are using an appPointer <aItemKey> instead of transferring the <aItemData>.

Page 16

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

They will be used instead by the SyncML engine, if „ITEM_AS_KEY:true“ is returned with
Module_Capabilities and at least SDK 1.4.0 is used. These keys are completely opaque for the
plugin module. Their attached context must be read or written with the GetValue/SetValue call-
back functions.

NOTE: „MoveItem“ is prepared for handling hierarchical datastores. In the current version the
SyncML engine has not yet implemented this feature. Therefore this function will not yet be cal-
led. For current plugin implementations LOCERR_NOTIMP (20030) can be returned.

4.4.5 The “admin write” section
The „admin write“ section allows to handle the map tables. Detailed description can be found at
„sync_dbapi.h“. All routines of this section can be implemented with return code DB_Forbidden
= 403, if the admin tables will be handled by the SyncML engine itself.

- SaveAdminData
- InsertMapItem
- UpdateMapItem
- DeleteMapItem

These routines will be called only, if <plugin_datastoreadmin> is set to yes in the config.
Needn’t to be implemented with „plugin_datastoreadmin:no“ at Module_Capabilities

NOTE: Some of the Synthesis SyncML (client) engines have the admin part built-in, so it can-
not be redirected to a plugin module for these cases.

4.4.6 The “general” section
Some general routines are part of this section:

- ThreadMayChangeNow
- WriteLogData
- AdaptItem *)
- DisposeObj **)
- DispItems ***)

*) Is not yet implemented in the SyncML engine, so it will never be called.
 Needn’t to be implemented with „plugin_dataadapt:no“ at Module_Capabilities
**) Not implemented for JNI and C#, because Java and C# run their own garbage collection
***) Will never be called by the SyncML engine; for debug purposes only.

As the name says, the thread may change after „ThreadMayChangeNow“ (but it must not).
If this information is not needed for the plugin module, it can be implemented empty.

Page 17

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

4.4.7 The “close” sect ion
The „close“ section releases the data store. The plug-in must release here all allocated memory
for this datastore. All objects returned to the SyncML engine will be released with
‚DisposeObj’ prior this call.

- DeleteContext

No access to this context will be done after „DeleteContext“.

4.5 Callback calls

The Synthesis SyncML engine supports a callback mechanism, which can be used at the plug-in
modules for writing comments to the log files. Logging will be done on module, session and da-
tastore level. The user should NEVER use „printf“ or „cout“ calls, as this kind of output is not
supported by all versions of the Synthesis SyncML server and will not be logged in an appropriate
way. The SDK_util file provides the DEBUG_Call and the DEBUG_DB call:

void DEBUG_Call(void* aCB, unsigned short debugFlags,
const char* ident, const char* routine,
const char* text, ...);

void DEBUG_DB (void* aCB,
const char* ident, const char* routine,
const char* text, ...);

DEBUG_DB is a DEBUG_Call with <debugFlags> = DBG_PLUGIN_DB
The <aCB> variable will be passed with the creation of each context (and must be stored within
the context object for subsequent use). The SyncML engine will write the text to the context
assigned log file. For more details see descriptions at „sync_dbapi.h“.

Sometimes, very extensive logging is requested, which should not be visible in normal log files.
The SyncML engine supports a flag called <exotic>.
Calls of DEBUG_Exotic_Call or DEBUG_Exotic_DB will be shown only, if the global "exo-
tic" debug flag is set:

void DEBUG_Exotic_Call(void* aCB, unsigned short debugFlags,
const char* ident, const char* routine,
const char* text, ...);

void DEBUG_Exotic_DB (void* aCB,
const char* ident, const char* routine,
const char* text, ...);

DEBUG_Exotic_DB is a DEBUG_Exotic_Call with <debugFlags> = DBG_PLUGIN_DB

The log file can be structured using logical blocks.
To add these structures, use DEBUG_Block / DEBUG_EndBlock as pairs. <aTag> identifies
such a pair.

void DEBUG_Block (void* aCB, const char* aTag, const char* aDesc,
const char* aAttrText);

void DEBUG_EndBlock(void* aCB, const char* aTag);

Page 18

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

The end of a thread can be signalled with. This information helps to create more structured logs.

void DEBUG_EndThread(void* aCB);

NOTE: The underlying debug callback calls are using cb->callbackRef as first parameter, not
<aCB> directly. If you are using these calls directly (e.g. on language platforms where SDK_util
is not available), please be aware that debug callback calls and UI callin calls are treated differently
concerning this first parameter.

4.6 The global context

There are two main reasons to have a global context: Either 1) for some reasons no global va-
riables are allowed within the plugin module or 2) there is a need to share some variables bet-
ween different plugin modules.

For both cases the SyncML engine provides a mechanism to get such a global context without
the need of global variables. A structure „GlobContext“ (defined at „sysync_dbapidef.h“) will be
provided at „Module_CreateContext“ thru mCB->gContext.

/*! Structure of GlobContext */
typedef struct {

void* ref; /* reference field */
void* next; /* reference to the next GlobContext structure */
uInt32 cnt; /* link count */
char refName[80]; /* the reference's name, length restricted */

} GlobContext;

<refName> which is initially empty can be assigned any specific name of this context and <ref>
should point to the desired global structure. The <cnt> must be incremented by 1.
The <next> field needn’t to be handled, this will be done by the SyncML engine.

mCB->gContext actually points to a linked list of GlobContext, where <next> points to next
element, as long as not NULL.

In subsequent calls of „Module_CreateContext“ it can be searched for the specific name at this
linked list. If available, <ref> is the desired reference. Don’t forget to increment <cnt> for each
assigned reference.

Each module context with such a reference must decrement <cnt> at „Module_DeleteContext“
again. When <cnt> reaches 0, the reference structure should be deleted, then <ref> set to NULL
and <refName> to „“. The SyncML engine will automatically remove such empty elements.

Each plugin module can use up to 3 such GlobContexts with a different <refName>.
The function „GlobContextFound“ can be used to search/assign such a GlobContext.

An example for a global structure which will be used by different plugin modules is a reference to
a virtual machine which only exists once per system. The Java Bridge „JNI“ is built with such a
reference to the JavaVM.

Page 19

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

4.7 The OceanBlue / SnowWhite adapter

For C++ an example implementation with a base class („OceanBlue“) and a derived class
(„SnowWhite“) is part of the package. „OceanBlue“ contains all interface function as virtual
methods which can be overriden by the „SnowWhite“ classes. The given example implements
version and capablity feedback for the module level, login for the session level and the data
handling methods readnext/read/insert/update/delete with some example code.

The intension is that „OceanBlue“ must not be changed, all adaptions will be done at the
„SnowWhite“ module. Here is a step-by-step tutorial how to create your own database adapter.

1) Make a copy of „snowwhite.h“ and „snowwhite.cpp“ for creating your own database adapter.

2) Adapt the name „snowwhite“ at „myadapter.h“ to your own plugin’s name. The snowwhite
sources do not contain „SnowWhite“ directly, they use MyAdapter.

3) Adapt the build number 0..255 to return it at the Version method. The build number is a
part of the version number which is completely user defined. The rest of the version number
must not be changed, as it will be used for upwards/downwards compability checks of the
engine.

4) Change the name and description at the Capabilities method

5) The SnowWhite adapter is using <asKey> methods for ReadNext / Read / Insert and
Update, and for Delete. The example shows in a simple way how to do this operations with
static elements. Replace them by your real database access.

6) Adapt the Login for different users. The SnowWhite login example just expects username=
super and password=user (MD5 encoded) and returns the <sUserKey> = „5678“. If you’re
using the database adapter for the client side with only one user, you can implement it as
dummy. Please note thate CreateContext is currently checking the returned <sUsrKey>

7) For the client engine you don’t need an admin data implementation.
For the server side, you can either

• configure an ODBC implementation
• use the INTERNAL_ADMIN implementation (using textdb way of using it)
• implement your own admin part by overriding the virtual admin methods

8) For the BLOB implementation
• use the INTERNAL_BLOB implementation (using textdb way of using it)
• implement your own BLOB part by overriding the virtual BLOB methods

NOTE: Suspend/Resume is using the BLOB implementation for partial items, so running the
datastore with OMA DS 1.2 requires a BLOB implementation.

9) Optionally implement now other things you need like filter support, e.g. for date ranges.

10) The SDK contains a lot of utiltiy functions (SDK_util / SDK_support) which can be used
by the database adapter.

Page 20

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

5. SySync UIApi SDK description

The SySync UIApi provides core SyncML functionality in form of a library (.dll, .so, .dlib etc.
depending on the platform) to create SyncML applications not only with custom specific UI
but also custom specific SyncML communication layers. This is because network communi-
cation is, especially on mobile devices, tightly coupled with the UI (asking user for network to
use, connection to establish, certificates to accept or deny etc.). In addition, modern operating
systems all provide built-in support libraries for common communication layers like HTTP or
OBEX which match platform specifics optimally.

5.1 Connecting the SyncML core library via UIApi

The UI Api interface is based on an interface structure with several methods in it.

So as the first step, the UI application must get this UI_Call_In interface structure <aCI> and
the engine’s version number <aEngVersion> from the SyncML engine. There is a unified func-
tion call „ConnectEngine“:

/* Main entry point when connecting engine from outside */
ENGINE_ENTRY TSyError ConnectEngine (UI_Call_In *aCI,

CVersion *aEngVersion,
CVersion aPrgVersion,
uInt16 aDebugFlags) ENTRY_ATTR;

NOTE: For C# „ConnectEngineS“ must be used instead. That’s beause the interface structure
must be allocated within the managed environment. <aCallbackVersion> is the current version
of this structure, as it might increase for future versions. It is allowed to use „ConnectEngineS“
(as replacement for „ConnectEngine“) also in the C/C++ environment.

ENGINE_ENTRY TSyError ConnectEngineS(UI_Call_In aCI,
uInt16 aCallbackVersion,
CVersion *aEngVersion,
CVersion aPrgVersion,

uInt16 aDebugFlags) ENTRY_ATTR;

The UI_Call_In structure allows now to access to all the UI application functions (through its
function pointer members). The UI_Call_In interface structure is based on the same
SDK_Interface_Structure (defined at sync_dbapidef.h), which is also used by the DBApi SDK.
The DBApi and UIApi share some of the functions – for example the DB_DebugXXXX functi-
ons can be called in both APIs for creating log file entries. Likewise, the GetValueXXX and
SetValueXXX routines are available in both APIs.

For C++, there is a wrapper class named TEngineModuleBridge is provided as part of the SDK
to facilitate access; likewise, for Borland/Codegear Delphi a similar Delphi wrapper class
(Delphi\sdk_sources_delphi\sysync_engine.pas) in Pascal exists.

The engine version can be used for compatibility check or action. The engine itself makes some
checks for compatibility with <aPrgVersion> versus <aEngVersion>, so is strongly recommen-
ded to take „Plugin_Version(<buildNumber>)“ as <aEngVersion> or the version definitions
of Java or C#.

Page 21

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

The UI Api contains 3 sections:
• Engine Init
• Running Sync Sessions
• Settings Access

For detailed information see method descriptions in „enginemodulebase.h“

The UI application must disconnect the engine at the end to make sure that all settings are stored
correctly:

/* Entry point for disconnecting the engine at the end */
ENGINE_ENTRY TSyError DisconnectEngine(UI_Call_In aCB) ENTRY_ATTR;

5.2 Using a SyncML Client Library via UIApi

The following paragraphs describe the basic steps to take to create a SyncML client application.
Details may differ depending on your actual setup.

Please also refer to the fully functional sample clients provided as part of the SDK (SyncML
clients for Mozilla Sunbird/Lightning as GUI applications for Windows (in Codegear Delphi
Pascal), MacOSX (in XCode Cocoa/Objective C) and Linux (Glide/Gtk C++).

5.2.1 Preparation for initialisation
First, the engine library must be connected as described in 5.1.

Then, before actually initializing the engine with a XML configuration file, some preparations
might be needed. The Synthesis SyncML engine version 3.1 and later support so-called "config
variables", which can be used to embed dynamic data from the runtime environment in a config
file. For example, command line arguments can be used to define path specifications in the con-
fig file (debug logs, data files...) without actually modifying the config file.

Assume the config file contains a debug log directory specification as follows:

<debug>
<logpath>$(mylogpath)</logpath>
…

</debug>

To make this work, the config variable "mylogpath" must be defined before actually reading the
XML config (see SySync_config_reference.pdf chapter "Configuration variables and conditional
configuration"). In C, this will look as follows:

// Assume that UI_Call_In *callInP contains the call-in structure
// as returned by ConnectEngine()

TSyError sta;

Page 22

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

// open the settings key that provides access to config variables
appPointer keyH = NULL; // will receive the opened key's handle
sta = callInP->OpenKeyByPath(callInP, &keyH, NULL, "/configvars",0);

if (sta==LOCERR_OK) {
// config variable settings key opened successfully
// - define text mode
callInP->SetTextMode(callInP, keyH, CHS_UTF8, LEM_CSTR, false);
// - set the config variable's value
callInP->SetValue(

callInP,
keyH,
"mylogpath",
VALTYPE_TEXT,
"C:\\syncml\\logfiles", // the config var value to set
-1 // automatically calculate length from null-terminated string

);
// done with config variables, close settings key
callInP->CloseKey(callInP,keyH);
keyH=NULL;

}

When all config variables are defined, the engine can be initialized.

5.2.2 Engine Init
As the next step, the configuration must be provided to the SyncML engine. This can be done on
three different ways. One of these ways must be chosen:

• the file name must be provided to the engine, so the engine can read the file directly (using
InitEngineFile).

• the whole configuration must be presented as one contiguous data block in memory (using
InitEngineXML).

• a callback for config reading must be given, so the engine can read it step by step (using
InitEngineCB).

The string mode can be chosen (using SetStringMode) prior to the engine initialisation, if de-
fault settings are not fitting, e.g. a charset which is not UTF-8

5.2.3 Acessing Settings
There are several SyncML engine settings which can be configured from the UI application side.
The settings are embedded within a tree, comparable to a directory or Windows registry tree.
Setting values have therefore a path name, which must be opened first (with „OpenKeyBy-
Path“). Then values can be read („GetValue“ / „GetValueByID“) or written („SetValue“ /
„SetValueByID“). Multiple settings paths can be opened at the same time. „SetTextMode“
and „SetTimeMode“ can be defined for each context.

The UI Application interface does not provide any undo functionality, so changes will usually
take effect immediately (or after calling „CloseKey“). If undo is required, the UI application itself
must provide this functionality.

Page 23

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

An example program „UI_app_settings.cpp“ shows how these settings can be read and written.
A list of common path and key names supported for the SyncML client engine can be found in
9.3. Depending on the version, special functionality and platform of the client library the availa-
ble path and key names might be different from the standard set in 9.3 – please refer to separate
manuals for specific products.

Examples for key paths are: - „/profiles“
- „/engineinfo“

Examples for „/profile“ sub entries are: - „serverURI“
- „serverPassword“

Example for „/engineinfo“ entries is: - „version“

The policy should be to close keys immediately after use, this will avoid consistency and locking
problems in some cases. Some values will be stored persistently, others must be set up each time
the UI application is starting.

5.2.3.1 Preparations before accessing settings profiles
At least one client settings profile should be present after initialisation. So it is recommended to
check for an existing profile at startup of a client application and create a profile if none already
exists. The following code sample shows the steps:

// Still assume that UI_Call_In *callInP contains the call-in structure
// as returned by ConnectEngine()

// access settings to make sure a profile exists
appPointer profilesKeyH=NULL, profileKeyH=NULL;
// - open the profiles container
sta = callInP->OpenKeyByPath(callInP,&profilesKeyH,NULL,"/profiles",0);
if (sta==LOCERR_OK) {

// - first check settings status. This returns an error code if
// configuration data was found, but is not compatible with current
// version of the engine. If so, the "overwrite" flag must be
// explicitly set to force overwriting the old config with a new,
// empty copy.
short settingsstatus;
memSize sz;
sta = callInP->GetValue(
callInP,
profilesKeyH,
"settingsstatus",
VALTYPE_INT16, // we want the value as 16-bit integer
(appPointer)&settingsstatus, // put value here
sizeof(settingsstatus), // size of variable
&sz

);
if (sta!=LOCERR_OK || settingsstatus==LOCERR_CFGPARSE) {

// problem with current config.
// We could ask user here to preserve old config and
// exit the application. For now, we just force
// creation of a new config
// - set "overwrite" flag to force creation of new config
uInt8 overwrite=1;
sta = callInP->SetValue(

Page 24

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

callInP,
profilesKeyH,
"overwrite",
VALTYPE_INT8,
&overwrite, // the config var value to set
sizeof(overwrite) // size

);
// - now check status again (will create new settings in the engine)
sta = callInP->GetValue(

callInP,
profilesKeyH,
"settingsstatus",
VALTYPE_INT16, // we want the value as 16-bit integer
(appPointer)&settingsstatus, // put value here
sizeof(settingsstatus), // size of variable
&sz

);
}
// see if at least one profile exists - if not, create default profile
sta = callInP->OpenSubkey(

callInP, &profileKeyH, profilesKeyH, KEYVAL_ID_FIRST, 0
);
if (sta==DB_NoContent) {

// no profile exists, create default profile now
sta = callInP->OpenSubkey(

callInP, &profileKeyH, profilesKeyH, KEYVAL_ID_NEW_DEFAULT, 0
);
if (sta!=LOCERR_OK) {

// Error, cannot create settings
// You could show an user alert here
exit(1); // terminate

}
}
if (sta==LOCERR_OK && profileKeyH!=NULL) {

// profile exists now
callInP->CloseKey(callInP,profileKeyH); // close for now

}
// done with profiles for now
callInP->CloseKey(callInP,profilesKeyH);

}

5.2.3.2 Editing Settings
To provide editing of client settings, the applications must open the "/profiles" key as show abo-
ve, then open one of the contained profiles. This profile contains some session-level configurati-
on like Server URL, username, password. As a session can target more than a single datastore for
synchronisation, each profile contains a "targets" container which in turn contains a key for each
datastore the client supports. To identify the targets, the XML configuration file must include a
numeric identifier in the <dbtypeid> tag in each <datastore> section (see
SySync_config_reference.pdf). Within the "targets" key, this identifier can be used to open the
individual targets by id using OpenSubkey().
So the settings hierarchy for SyncML clients is as follows (details see 9.3):

• "/profiles" is the container of all client settings profiles. At least one profile is required,
multiple profiles can be used to maintain settings for synchronizing with more than one
SyncML server.

• "/profiles" contains the special "settingstatus" and "overwrite" values used to check
"health" of current settings, as described in 5.2.3.1.

Page 25

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

• Profiles within "/profiles" must be opened by using OpenSubkey(), usually by iterating
over available profiles using the special KEYVAL_ID_FIRST and KEYVAL_ID_NEXT
values as id.

o Each profile contains a number of session level settings values, like "serverURI",
"serverUser" etc. - these are accessed using GetValueXXX and SetValueXXX
routines.

o Each profile contains a "targets" container key which can be opened by
OpenKeyByPath().

� "targets" contains a target key for each datastore supported by the
SyncML client engine (that is, those defined in the XML configuration).

� Each target must be opened using OpenSubKey(), using the numeric
identifier specified with <dbtypeid> in the XML config for each
datastore. It is also possible to iterate over all targets using the special
KEYVAL_ID_FIRST and KEYVAL_ID_NEXT values as id.

• Each target contains a number of datastore level settings values,
like "syncmode", "remotepath" etc. - these are accessed using
GetValueXXX and SetValueXXX routines.

When accessing these settings, make sure you don't close container keys as long as subkeys con-
tained are still open. So usually, keys are opened in the order "/profiles", profile, "targets", target
and closed in the reverse order. It is allowed to have multiple profiles or targets open at the same
time, as long as the parent key remains open as well.

5.2.4 Running Sync Sessions
Running a sync session consists of three basic steps:

• creating a sync session using OpenSession()

• calling SessionStep() repeatedly in a loop until it returns STEPCMD_DONE.

o The return value in aStepCmd (see "engine_defs.h" for SESSIONSTEP_xxx
definitions) must be checked to see when the engine has SyncML data ready to
send to the SyncML server or needs an answer from the SyncML server. If so, the
needed comminication with the server (http, OBEX) must take place using
GetSyncMLBuffer()/RetSyncMLBuffer() or
ReadSyncMLBuffer()/WriteSyncMLBuffer() routines to get or put SyncML data.
For Java applications, only Read/WriteSyncMLBuffer are available.

o To send data to the SyncML server, the application must query the SyncML
engine for the URL and content type to use by opening the session-local session
key using OpenSessionKey() and querying its "connectURI" and "contenttype"
values.

o The communication channel can be held open between calls to SessionStep()
until STEPCMD_RESTART is returned in aStepCmd.

o Each call to SessionStep() returns a record of TEngineProgressInfo type, which
indicates progress of the sync session. The information in this record is useful to
show progress in the UI of the application. See "engine_defs.h" for progress
event PEV_XXX definitions.

• closing the sync session using CloseSession()

Page 26

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

The following C code skeleton shows the basic implementation required to run a sync session:

// Assume that UI_Call_In *callInP contains the call-in structure
// as returned by ConnectEngine()

// run a sync session
// - variables
TEngineProgressInfo progressInfo;
appPointer sessionH = NULL;
TSyError sta;
uInt16 stepCmd = STEPCMD_CLIENTSTART; // first step
const memSize textbuffersize = 300;

memSize textsize;
char textbuffer[textbuffersize];
// - create a session
sta = callInP->OpenSession(callInP,&sessionH,0,"mySyncSession");
if (sta!=LOCERR_OK) {

// error, exit
exit(1);

}
// sync main loop
do {
// take next step
sta = callInP->SessionStep(callInP,sessionH,&stepCmd,&progressInfo);
if (sta!=LOCERR_OK) {
// error, terminate with error
stepCmd=STEPCMD_ERROR;

}
else {
// step ran ok, evaluate step command
switch (stepCmd) {

case STEPCMD_OK:
// no progress info, call step again
stepCmd = STEPCMD_STEP;
break;

case STEPCMD_PROGRESS:
// new progress info to show
// Check special case of interactive display alert
if (progressInfo.eventtype==PEV_DISPLAY100) {

// alert 100 received from remote, message text is in
// SessionKey's "displayalert" field
appPointer sessionKeyH;
sta = callInP->OpenSessionKey(callInP,sessionH,&sessionKeyH,0);
if (sta==LOCERR_OK) {

// get message from server to display
callInP->GetValue(

callInP,
sessionKeyH,
"displayalert",
VALTYPE_TEXT, // we want the value as 16-bit integer
(appPointer)&textbuffer, // put value here
textbuffersize, // size of variable
&textsize

);
// tbd: display message to user
callInP->CloseKey(callInP,sessionH);

}
}
else {
// normal progress info
// tbd: show progress in the UI

}
stepCmd = STEPCMD_STEP;
break;

case STEPCMD_ERROR:
// error, terminate (should not happen, as status is
// already checked above)
break;

case STEPCMD_RESTART:

Page 27

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

// make sure connection is closed and will be re-opened for next request
// tbd: close communication channel if still open to make sure it is
// re-opened for the next request
stepCmd = STEPCMD_STEP;
break;

case STEPCMD_SENDDATA:
// send data to remote

// tbd: use OpenSessionKey() and GetValue() to retrieve "connectURI"
// and "contenttype" to be used to send data to the server
// tbd: use GetSyncMLBuffer()/RetSyncMLBuffer() to access the data to be
// sent or have it copied into caller's buffer using
// ReadSyncMLBuffer(), then send it to the server

// status for next step
if (true) /* tbd: check if communication with server successful */
stepCmd = STEPCMD_SENTDATA; // we have sent the request data

else
stepCmd = STEPCMD_TRANSPFAIL; // communication with server failed
break;

case STEPCMD_NEEDDATA:
// tbd: wait for receiving answer from server

// tbd: put answer received into SyncML engine's buffer, either by
// directly accessing it using GetSyncMLBuffer()/RetSyncMLBuffer()
// or by copying it with WriteSyncMLBuffer().

// status for next step
if (true) /* tbd: check if communication with server successful */
stepCmd = STEPCMD_GOTDATA; // we have received response data

else
stepCmd = STEPCMD_TRANSPFAIL; // communication with server failed

break;
} // switch stepcmd

}
// check for suspend or abort, if so, modify step command for next step
if (false /* tdb: check if user requests suspending the session */) {
stepCmd = STEPCMD_SUSPEND;
}

if (false /* tdb: check if user requests aborting the session */) {
stepCmd = STEPCMD_ABORT;

}
// loop until session done or aborted with error

} while (stepCmd!=STEPCMD_DONE && stepCmd!=STEPCMD_ERROR);
// done, now close the SyncML session
sta = callInP->CloseSession(callInP,sessionH);

SessionStep() is designed to keep execution time as short as possible, such that implementing a
responsive SyncML client is possible without using a separate thread. The code skeleton above
can be integrated in a GUI application main loop to allow processing SyncML, showing progress
in the UI and responding to user's requests (like pressing an abort button) in parallel.

NOTE: It’s recommend (on Windows systems) to initialize the network access before opening
the session for the first time. That’s because the <LocURI> information will be taken from net-
work information, if available.

Page 28

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

6. Setup Guide

This setup guide consists of two main sections:
• Section 6.1 describes the installation of the C/C++ interface,

Section 6.2 describes the usage of the JNI interface for Java.

• We recommend, that if you are new to Synthesis SyncML Server/Client, start testing with the
standalone version as you have immediate visible feedback on the console screen. If eve-
rything is working fine, then you can easily switch to the ISAPI or Apache version. For in-
stallation of the ISAPI or Apache version see the description of „SySync_Server_manual“.

6.1 Plug-in System for C/C++

Metrowerks CodeWarrior project files (.mcp) are part of the SDK delivery for Windows,
Linux and MacOSX, as well as the compiled shared libraries. The examples are based on
CodeWarrior V8.X for Windows and V9.X for MacOSX.

For Windows alternatively Visual Studio 2005 can be used. Ready-to-use *.vcproj files are part
of the SDK package.

For Linux, a generated makefile „Sysync_SDK_linux.mk“ is part of delivery as well and can be
used directly by calling „make“: make –f Sysync_SDK_linux.mk.

For MacOSX XCode can be used to create Universal Binaries which are working on PPC and
X86 architectures.

Three plug-in modules (a simple demo module in pure „C“ , a text DB module in „C++“ and a
module for adapting items) can be compiled and linked directly. Result will be the three shared
library modules „SDK_demodb“ , „SDK_textdb“ and „adaptitem“.

.dll for Windows,

.so for Linux,

.dylib for MacOSX

• Standard C example: The „SDK_demodb“ is just printing a debug message for each
routine. This can be a good and helpful starting point to implement routine by routine.
Writing debug messages is done thru the callback mechanism of the SyncML engine,
using the „Debug_DB“ call. The debug messages will be stored in the SyncML engine’s
log files. Don’t use „printf“ calls, as not all versions of the Synthesis SyncML server are
able to create such kind of output.

• C++ example: The „SDK_textdb“ is a text DB interface, which acts the same way as the
so called Synthesis SyncML demo server. This module can be a starting point when it’s
easier to adapt from an already running system. Plugin parameters <datafilepath>,
<blobfilepath> and <mapfilepath> are supported.

Page 29

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

NOTE: The CurrentTime() function used at „Session_GetDBtime“ and „StartData-
Read“ is implemented very rudimentary. For a good implementation, this func-
tion should be replaced by an enhanced version.

The example configuration „syncserv_odbc.xml“ is set up to access the „SDK_textdb“ directly
by default. <plugin_module> is configured for „SDK_textdb“ on session and datastore level.
The admin tables of the „SDK_textdb“ will be used.
For Linux and MacOSX „LD_LIBRARY_PATH“ must be set in order to access these plugin
library modules.

6.2 Plug-in System for Java

The Java Virtual Machine V1.4 or higher must be correctly installed.
For Linux and MacOSX „LD_LIBRARY_PATH“ must be set to access the JavaVM, e.g. at
“/usr/java/jre/lib/i386/client“ or „/usr/java/jre/lib/i386/server“.
For MacOSX this is normally „/system/Library/Frameworks/JavaVM.frameworks/Libraries“.

There is a Java example „SDK_javadb.java“ and its compiled classes (which have been created
with „javac SDK_javadb.java“).

The SDK class can also be within a Java package: A package example (named „sysync“) can be
found in the subdirectory „sysync“. The functionality of the package sample is identical to the
one on the top level. A package can be accessed by adding the package name, separated by a
space. JavaVM options can be added after the class and package name.

Examples: [JNI!SDK_javadb sysync]
[JNI!SDK_javadb sysync –verbose:jni]

The SyncML engine (PRO version only) has a built-in plug-in module for the JNI handling. The
identical plug-in is also available in compiled form as shared library „JNI.dll“ for test purposes
(but not as part of the SDK). For an operative environment, this external plug-in will not be
used, because the internal JNI is the preferred solution.

For UI applications, written in Java, the engine connection will be done with a „ConnectEngi-
ne“ call, which then provides access to all the UI application specific functions.
A simple sample program how to use the interface is part of the SDK: uiapp.java

Example: java –cp . uiapp.java

6.3 Plug-in System for C#

Will be accessed via GUID. There is a common GUID for the interface (which shouldn’t be
changed and a class specific GUID. The class specific GUID will be expected as subname at the
config file. GUIDs must be registered to the system using „regasm“.

regasm dbapi_csharp.dll /tlb: dbapi_csharp.tlb

Page 30

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

Example:
<plugin_module>CSHARP!348330a6-c7ee-4ba4-888b-39250cb31db1"</plugin_module>

6.4 Plug-in module XML configuration

Plug-in modules must be activated at the XML configuration file.
This can be done for the session and/or each datastore separately. It is even possible to use diffe-
rent plug-ins for the session and each datastore.

For the session, <server type=“plugin“> must be set.
The <plugin_module> must be set to the plug-in name, e.g.
 <plugin_module>SDK_textdb</plugin_module>

As there are built-in modules and external modules, the syntax for internal plug-ins is using brak-
kets. Example:
 - Internal demo plug-in: <plugin_module>[SDK_demodb]</plugin_module>
 - Shared library for demo plug-in: <plugin_module>SDK_demodb</plugin_module>

Built-in means, that the plug-in is compiled and statically linked to the SyncML engine.
Only Synthesis can create built-in modules; the SDK user can only create external modules as
shared libraries. „SDK_demodb“ and „SDK_textdb“ are available both as built-in and as external
modules. The PRO version of the Synthesis server contains the JNI as built-in plug-in module.
For system performance, there is no measurable difference between internal / external modules.

By default, the SyncML engine doesn’t use authentification and device administration of the plug-
in module. They must be switched on in the configuration.
To use the login part of the plug-in, <plugin_sessionauth>yes</plugin_sessionauth> must be
set. To use the admin part of the plug-in, <plugin_deviceadmin>yes</plugin_deviceadmin> is
required.

For the datastore access, <datastore name=“NAME“ type=“plugin“> must be set, where the
NAME is e.g. „contacts“. The <plugin_module> must be set the same way as for the session.
If <plugin_deviceadmin> is active on session level, it will be used for each datastore as well.

6.5 Module naming convention

The Synthesis SyncML plug-in modules will used with the following naming convention:

<plugin_module>name</plugin_module>

A shared library „name.dll“ (or „name.so“ for Linux) must exist in the search path of the sy-
stem. The SyncML engine will create an error 20010, if the library does not exist.

„name“ can consist of a main module name and sub module names, e.g. „aaa!bbb“, where
‚aaa’ is the name of the library („aaa.dll“) and ‚bbb’ is a local name for the plug-in module.
This concept allows to build cascades or hierarchies of plug-ins, where the sub module name is
given to the next plug-in module. „aaa!bbb!ccc“ is an example for a plug-in with a two level sub
system.

Page 31

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

Example: The bridge to Java
The Java plug-in is an example of such a sub system: The syntax for the SDK sample must be:

<plugin_module>JNI!SDK_javadb</plugin_module>

Here we have a plug-in called „JNI.dll“ which is the bridge between the SyncML engine (written
in C++) and the the Java plug-in (SDK_javadb) with the static class „SDK_javadb“.
Error 20034 will be returned, if the sub system is not available.

For Java, the CLASSPATH can be included directly as well.
As an example for a classpath at „C:\java_files“, the Java Virtual Machine will be attached cor-
rectly with:

<plugin_module>[JNI!C:\java_files\SDK_javadb]</plugin_module>

NOTE: SDK V1.3.8.X and later allow to connect more than one Java class with a given class-
path and package name for different plugin sections, however the VM options are the same and
will be shared among all Java plugins. The options of the first connecting context (usually the
session context) will considered, options of other <plugin_module> sections will be ignored.

NOTE: The plugin module names are case sensitive in some cases, e.g. in Java environment.

C# database adapters are using a GUID as sub system name:

Example: C# bridge

<plugin_module>CSHARP!348330a6-c7ee-4ba4-888b-39250cb31db1"</plugin_module>

Page 32

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

6.6 Plugin_Info program

A utility program for testing plugin modules independently is part of the SDK. It returns some
version and identification info about a plugin:

Example: plugin_info –p SDK_textdb

Synthesis Plugin_Info Tool V1.5.2.0

Name : SDK_textdb
Version : V1.5.2.0
... at least : V1.5.1.0 required as engine's SDK version

Version : V1.5.2.0
Manufacturer : Synthesis AG
Description : Text database module. Writes data directly to TDB_*.txt file
Platform : Windows (CodeWarrior) (DLL)
GlobContext : 0014AAB0 (00159868 'TextDB')

plugin_sessionauth : yes
plugin_deviceadmin : yes
plugin_datastoreadmin : yes
plugin_datastore : yes
plugin_dataadapt : yes
ADMIN_Info : yes

Session context : available (0015C1F0)
Datastore context (admin) : available (0015C280)
Datastore context (data) : available (0015CF58)

Example: plugin_info –p “[JNI!SDK-javadb sysync]“
Synthesis Plugin_Info Tool V1.5.2.0

Name : [JNI!SDK_javadb sysync]
Version : V1.5.2.0
... at least : V1.5.1.0 required as engine's SDK version

Name : JNI
Version : V1.5.2.0
Manufacturer : Synthesis AG
Description : JNI bridge to Java
Platform : Windows (CodeWarrior) (LIB)
GlobContext : 0014B130 (00145158 'JNI')

sub system

Name : SDK_javadb sysync
Version : V1.5.2.0
Manufacturer : Synthesis AG
Description : Java Example Module (package)
Platform : Java

plugin_sessionauth : yes
plugin_deviceadmin : yes
plugin_datastoreadmin : yes
plugin_datastore : yes
plugin_dataadapt : yes
ADMIN_Info : yes

Session context : available (0014C1B8)
Datastore context (admin) : available (0014C430)
Datastore context (data) : available (0014C6B8)

The program allows to get some debug information (with options –d and –e) as well as forcing
any desired engine SDK version other than the current version for test (option –v).
For Linux and MacOSX „LD_LIBRARY_PATH“ must be set in order to access these plugin
library modules.

Page 33

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

6.7 UIApi C# interface

For C# there exists an equivalent SDK interface to the UI functions of the engine. The usage of
the functions is identical, they are implemented via delegate marshal calls.
The interface definition can be found in the program.cs example of the SDK package.
„ConnectEngineS“ and „DisconnectEngine“ are implemented as DLL calls.

The difference to the function „ConnectEngine“ is, that the SDK_Interface_Struct will allocated
on the C# side; <aCallbackVersion> will be needed additionally.

class Program
{
const String DllName = "syncclient_test.dll";

static debug_calls d = new debug_calls();
static uiapp_calls u = new uiapp_calls();

// ...

// --
[DllImport(DllName)] public static extern
TSyError ConnectEngineS (ref SDK_Interface_Struct aCB,

UInt16 aCallbackVersion,
ref UInt32 aEngVersion,

UInt32 aPrgVersion, UInt16 aDebugFlags);
[DllImport(DllName)] public static extern
TSyError DisconnectEngine(ref SDK_Interface_Struct aCB);

// ...
}

As an example, the „InitEngineXML“ call is shown below. The whole UI call in is implemented
as class „uiapp_calls“ at „sysync_uiapp_calls“ as part of the SDK package.

public class uiapp_calls
{
// The method prototype definitions ...

delegate TSyError InitEngineXML_Func (ref SDK_Interface_Struct aCB, String aConfigXML);

// ... and the marshal calls
public TSyError InitEngineXML(ref SDK_Interface_Struct aCB, String aConfigXML)
{
IntPtr ip= aCB.InitEngineXML;

InitEngineXML_Func v=
(InitEngineXML_Func)Marshal.GetDelegateForFunctionPointer(ip,

typeof(InitEngineXML_Func));

return v(ref aCB, aConfigXML);
} // InitEngineXML

// ...
}

Page 34

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

7. Change History

7.1 Changes since SDK V1.0.0.2

For customers who have started to implement a plug-in with SDK V1.0.0.2, some adaptions
must be made to make it conformant to SDK V1.3.8.X. Best way to do this, is to install this new
SDK package and adapt the plug-in’s c/cpp or java files. The SyncML engine is written to be
downwards compatible for all these features, so it will run correctly with all versions, as long as
the „Plugin_Version“ of SDK_util will return the correct version number, so this version num-
ber MUST NOT be changed (except for the customer defined build number, which represents
the last digit 0..255 of the version number).

Upwards compatibility (SDK version newer than engine) are covered partly, because an older
engine cannot handle cases of changed parameter lists or no longer existing functions or me-
thods. However the engine informs the plugin about its version (NOTE: this is not SyncML ser-
ver’s / client’s version, e.g. V2.1.1.28, but the plugin interface version, e.g. V1.5.2.0). Additionally
the plugin returns (with „Module_Capabilities“) the minimum required version. The server au-
tomatically stops then with an error 20033 if the this build is too old for this SDK/plugin.

The following things MUST BE CHANGED:

Module_PluginParams: Has now a new additional parameter <engineVersion>
(to inform the plug-in about its version)

Callback calls: Up to callbackVersion = 5 is now supported, see structure defi-
nition at „sync_dbapidef.h“. Hierarchical logs and exotic output
are supported now. Boolean alignment problems are fixed.

DeleteBlob: New function added (allows consistent BLOB handling now)

Session_AdaptItem, New functions added, these function will allow the manipulation
AdaptItem: of variables of the script context (They are not yet supported by

the SyncML engine, but the implementation is prepared now).

InsertMapItem: New function added, no longer combined with „UpdateMapItem“

MapID: The MapID struct contains a new element uInt8 ident.. It will be
used to store the status of Suspend/Resume of OMA DS 1.2.

Build numbers: System has changed from V1.0.N.2, where „N“ was the platform
identifier, to V1.3.8.X, where „X“ is a customer defined build
number.

StartDataRead: Has now a new additional parameter <resumeToken> for OMA
DS 1.2 support (Suspend/Resume).

Session_GetDBTime: New function added (returns the database’s time, if available)

DB_Full: Definition has been changed from 520 to 420.

Page 35

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

DBG_PLUGIN_XXX: A separate flag system (with 16 flags) for the plugin debug logging
has been introduced. Bits 0 and 1 are defined and reserved.

DEBUG_Exotic: Has been separated into DEBUG_Exotic_Call and
DEBUG_Exotic_DB.

Session_Login (Java only): Parameter „String sPwd“ has been changed to „VAR_String
sPwd“, to allow the usage of all password modes.

7.2 Changes since SDK V1.3.0

JCallback (Java only): The callback functions are now using <thisCB> as 1st return pa-
rameter. This solves a problem with using Java packages.

Example:
public native void DebugDB(int thisCB, String aTxt);

Module_Capabilites: „ADMIN_Info“ will be considered now, it adds the identifier
„ADMIN“ to <moduleName> at admin’s „CreateContext“.

FilterContext: Is supported by the SyncML engine for SDK version >= V1.3.8.

Callback calls: Up to callbackVersion = 8 is now supported, see structure defi-
nition at „sync_dbapidef.h“.

UI Api: Is supported by the SyncML engine for SDK version >= V1.4.0
callbackVersion = 8 with the UI interface functions will be used.

DatastoreContext: 4 additional functions „*AsKey“ have been added. They allow an
<aItemKey> handling instead of using <aItemData>. Is suppor-
ted by the SyncML engine for SDK version >= V1.4.0

SDK_Interface_Structure: is the new name of the former „DB_Callback_Structure“. Two
(equivalent) pointer types for this structure are defined now:
The already existing „DB_Callback“ for the DBApi SDK and
„UI_Call_In“ for the UIApi SDK.

Page 36

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

7.3 Changes since SDK V1.4.0

C# (dbapi) DebugDB and other callback calls can log now to the engine’s log
file directly: „sysync_debug_calls.cs“ is part of the SDK now.

[MarshalAs(UnmanagedType.LPWStr)] will be used now for all
string parameters (instead of LPStr), the SyncML engine will make
the conversion from/to UTF-8 internally.
The new files „dbapi_interface.cs“ and „sysync_debug_calls.cs“
(with the LPWStr defs) must be used.

C# (uiapp) The UI call in methods have changed from direct DLL calls to
marshalled delegate calls: „sysync_uiapp_calls.cs“ is part of the
SDK now.

C# ConnectEngineS Must be used instead of „ConnectEngine“ now.

InsertItem DB Plugin may return a DB_DataMerged (207) error which in-
forms the engine about an already existing item which has been
updated now. The engine will read this item again to keep track of
this update (either in the same or the next session).
NOTE: This feature is supported for server only.

Callback calls: Up to callbackVersion = 9 is now supported, see structure defi-
nition at „sync_dbapidef.h“.

FinalizeLocalID: New function has been added to replace a temporary ID sion by
its final ID at the end of the session. The function can return
LOCERR_NOTIMP, if not needed.

DeleteSyncSet:: All elements of the sync set will be removed. If the function re-
turns LOCERR_NOTIMP, the engine will remove element by
element.

7.4 Changes since SDK V1.5.0

GlobContext „GlobContext“ extended for multi module usage

SDK_textdb example Adapted for GlobContext use

Callback calls: Up to callbackVersion = 11 is now supported, see structure defi-
nition at „sync_dbapidef.h“.

OceanBlue/SnowWhite C++ example added

SDK_textdb example NID_* file has been added, containing a persistent new ID for
inserted items.

For more details of the SDK change history see „sync_dbapidef.h“.

Page 37

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

8. DBApi Interface description

8.1 Function overview

• TSyError Module_CreateContext (CContext *mContext, cAppCharP moduleName, cAppCharP sub-
Name, cAppCharP mContextName, DB_Callback mCB)

• CVersion Module_Version (CContext mContext)
• TSyError Module_Capabilities (CContext mContext, appCharP *mCapabilities)
• TSyError Module_PluginParams (CContext mContext, cAppCharP mConfigParams, CVersion engin-

eVersion)
• void Module_DisposeObj (CContext mContext, void *memory)
• TSyError Module_DeleteContext (CContext mContext)

• TSyError Session_CreateContext (CContext *sContext, cAppCharP sessionName, DB_Callback sCB)
• TSyError Session_AdaptItem (CContext sContext, appCharP *sItemData1, appCharP *sItemData2,

appCharP *sLocalVars, uInt32 sIdentifier)
• TSyError Session_CheckDevice (CContext sContext, cAppCharP aDeviceID, appCharP *sDevKey,

appCharP *nonce)
• TSyError Session_GetNonce (CContext sContext, appCharP *nonce)
• TSyError Session_SaveNonce (CContext sContext, cAppCharP nonce)
• TSyError Session_SaveDeviceInfo (CContext sContext, cAppCharP aDeviceInfo)
• TSyError Session_GetDBTime (CContext sContext, appCharP *currentDBTime)
• sInt32 Session_PasswordMode (CContext sContext)
• TSyError Session_Login (CContext sContext, cAppCharP sUsername, appCharP *sPassword,

appCharP *sUsrKey)
• TSyError Session_Logout (CContext sContext)
• void Session_DisposeObj (CContext sContext, void *memory)
• void Session_ThreadMayChangeNow (CContext sContext)
• void Session_DispItems (CContext sContext, bool allFields, cAppCharP specificItem)
• TSyError Session_DeleteContext (CContext sContext)

• TSyError CreateContext (CContext *aContext, cAppCharP aContextName, DB_Callback aCB,
cAppCharP sDevKey, cAppCharP sUsrKey)

• uInt32 ContextSupport (CContext aContext, cAppCharP aContextRules)
• uInt32 FilterSupport (CContext aContext, cAppCharP aFilterRules)
• TSyError LoadAdminData (CContext aContext, cAppCharP aLocalDB, cAppCharP aRemoteDB,

appCharP *adminData)
• TSyError SaveAdminData (CContext aContext, cAppCharP adminData)
• bool ReadNextMapItem (CContext aContext, MapID mID, bool aFirst)
• TSyError InsertMapItem (CContext aContext, MapID mID)
• TSyError UpdateMapItem (CContext aContext, MapID mID)
• TSyError DeleteMapItem (CContext aContext, MapID mID)
• void DisposeObj (CContext aContext, void *memory)

Page 38

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

• void ThreadMayChangeNow (CContext aContext)
• void WriteLogData (CContext aContext, cAppCharP logData)
• void DispItems (CContext aContext, bool allFields, cAppCharP specificItem)
• TSyError AdaptItem (CContext aContext, appCharP *aItemData1, appCharP *aItemData2, appCharP

*aLocalVars, uInt32 aIdentifier)
• TSyError StartDataRead (CContext aContext, cAppCharP lastToken, cAppCharP resumeToken)
• TSyError ReadNextItem (CContext aContext, ItemID aID, appCharP *aItemData, sInt32 *aStatus,

bool aFirst)
• TSyError ReadNextItemAsKey (CContext aContext, ItemID aID, appPointer aItemKey, sInt32

*aStatus, bool aFirst)
• TSyError ReadItem (CContext aContext, ItemID aID, appCharP *aItemData)
• TSyError ReadItemAsKey (CContext aContext, const ItemID aID, appPointer aItemKey)
• TSyError ReadBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID, void **aBlkPtr, un-

signed long *aBlkSize, unsigned long *aTotSize, bool aFirst, bool *aLast)
• TSyError EndDataRead (CContext aContext)
• TSyError StartDataWrite (CContext aContext)
• TSyError InsertItem (CContext aContext, cAppCharP aItemData, ItemID newID)
• TSyError InsertItemAsKey (CContext aContext, appPointer aItemKey, ItemID newID)
• TSyError FinalizeLocalID (CContext aContext, const ItemID aID, ItemID updID)
• TSyError UpdateItem (CContext aContext, cAppCharP aItemData, const ItemID aID, ItemID updID)
• TSyError UpdateItemAsKey (CContext aContext, appPointer aItemKey, const ItemID aID, ItemID

updID)
• TSyError MoveItem (CContext aContext, const ItemID aID, cAppCharP newParentID)
• TSyError DeleteItem (CContext aContext, const ItemID aID)
• TSyError DeleteSyncSet (CContext aContext)
• TSyError WriteBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID, void *aBlkPtr, un-

signed long aBlkSize, unsigned long aTotSize, bool aFirst, bool aLast)
• TSyError DeleteBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID)
• TSyError EndDataWrite (CContext aContext, bool success, appCharP *newToken)
• TSyError DeleteContext (CContext aContext)

8.2 Function Documentation

ENTRY TSyError AdaptItem (CContext aContext, appCharP * aItemData1, appCharP *
aItemData2, appCharP * aLocalVars, uInt32 aIdentifier)

This function adapts aItemData
Parameters:

<aContext> The datastore context
<aItemData1> The 1st item's data
<aItemData2> The 2nd item's data
<aLocalVars> The local vars
<aIdentifier> To identify, where it is called

Returns:
error code

Page 39

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

NOTE: The memory for adapted strings must be allocated locally. The SyncML engine will call
'DisposeObj' later, to release again its memory. One or more strings can be returned unchanged as
well.

ENTRY uInt32 ContextSupport (CContext aContext, cAppCharP aSupportRules)

This function asks for specific context configurations
Parameters:

<aContext> The datastore context
<aSupportRules> The SyncML sends a list of support rules. This function has to reply, up to which
rule, contexts are supported (and switched on now). Data is formatted as multiline
aa:bb<CRLF>cc:dd[<CRLF>]

Returns:
Up to <n> fields are supported (and switched on) for this context. If 0 will be returned, no field of
<aSupportRules> is supported.

ENTRY TSyError CreateContext (CContext * aContext, cAppCharP aContextName,
DB_Callback aCB, cAppCharP sDevKey, cAppCharP sUsrKey)

This routine is called to create a new context for a datastore access. It must allocate all resources
for this context and initialize the <aContext> parameter with a value that allows re-identifying the
context. <aContext> can either be a pointer to the local context structure or any key value which
allows to re-identify the context later. Subsequent calls related to this context will pass the <aC-
ontext> value as returned from CreateContext. The context must be valid until 'DeleteContext' is
called. <plugin_params> can be defined individually.
NOTE: The SyncML engine treats <aContext> simply as a key. The only condition is uniqueness
for all datastore contexts. Even <aContext> = 0 can be used.
Parameters:

<aContext> Returns a value, which allows to identify this datastore context.
<aContextName> Allows to identify the context, if more than one must be handled. <contextName> is
defined at the XML configuration.
<aCB> DB_Callback structure for datatstore logging.
<sDevKey> The result of 'Session_CheckDevice' comes in here.
<sUsrKey> The result of 'Session_Login' comes in here.

Returns:
error code, if context could not be created (e.g. not enough memory), 0 if context successfully created.

ENTRY TSyError DeleteBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID)

This routine deletes the specific binary logic block <blobID> at the database.
Parameters:

<aContext> The datastore context.
<aID> ItemID (with <item>,<parent>).
<aBlobID> The assigned ID of the blob.

Returns:
error code, if not ok (e.g. invalid <aID>,<aBlobID>)

ENTRY TSyError DeleteContext (CContext aContext)

This routine is called to delete a context, that was previously created with 'CreateContext'. The DB
Module must free all resources related to this context. No calls with <aContext> will be done after
calling this routine, so the assigned structure, allocated at 'CreateContext' can be released here.
Parameters:

<aContext> The datastore context.
Returns:

Page 40

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

error code, if context could not be deleted (e.g. not existing <aContext>).

ENTRY TSyError DeleteItem (CContext aContext, const ItemID aID)

This routine deletes a dataset from the database
Parameters:

<aContext> The datastore context.
<aID> ItemID (with <item>,<parent>) to be deleted.

Returns:
error code

• LOCERR_OK (=0), if successful
• DB_NotFound (=404), if unknown <aItemID>
• ... or any other SyncML error code, see Reference Manual

ENTRY TSyError DeleteMapItem (CContext aContext, MapID mID)

Map table handling: Delete a map item of this context
Parameters:

<aContext> The datastore context
<mID> MapID (with <localID>,<remoteID> and <flags>).

Returns:
error code, if this MapID can't be deleted, or if this MapID does not exist.

USED ONLY WITH <plugin_datastoredadmin>

ENTRY TSyError DeleteSyncSet (CContext aContext)

This routine deletes all datasets from the database
Parameters:

<aContext> The datastore context.
Returns:

error code
• LOCERR_OK (=0), if successful
• LOCERR_NOTIMP (=20030). For this case, the engine removes all items directly
• ... or any other SyncML error code, see Reference Manual

ENTRY void DispItems (CContext aContext, bool allFields, cAppCharP specificItem)

Writes the context of all items to dbg output path This routine is implemented for debug purposes
only and will NOT BE CALLED by the SyncML engine. Can be implemented empty, if not
needed.
Parameters:

<aContext> The datastore context.
<allFields>

• true : all fields, also empty ones, will be displayed;
• false: only fields <> "" will be shown

<specificItem>
• "" : all items will be shown;
• else : shows the <specificItem>

Returns:
-

Page 41

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

ENTRY void DisposeObj (CContext aContext, void * memory)

Disposes memory, which has been allocated within the datastore context. 'DisposeObj' can occur
at any time within <aContext>.
Parameters:

<aContext> The datastore context.
<memory> Dispose allocated memory.

Returns:
-

ENTRY TSyError EndDataRead (CContext aContext)

This routine terminates the read from database phase It can be used e.g. for termination of a trans-
action. In standard case it can be implemented empty, returning simply a value LOCERR_OK = 0.
Parameters:

<aContext> The datastore context.
Returns:

error code

ENTRY TSyError EndDataWrite (CContext aContext, bool success, appCharP * newToken)

Advises the database to finsish the running transaction
Parameters:

<aContext> The datastore context.
<success>

• true: All former actions were successful, so the database can commit
• false: The transaction was not successful, so the database may rollback or ignore the transaction.

<newToken> An internally generated string value, which will be used to identify changed database rec-
ords. It is normally an ISO8601 formatted string, which represents the module's current time (at the
time the 'StartDataRead' of this context has been called). All changed records of the currrent context
must get this token as timestamp as as well. The SyncML engine will return this value with the 'Start-
DataRead' call within the next session. It must return NULL in case of no <success>.

Returns:
error code, if operation can't be performed. No <success> is not an error.

NOTE: By default, the SyncML engine expects an ISO8601 string for <newToken>. But the
SyncML engine can be configured to treat this value completely opaque, if implemented in a dif-
ferent way.
The <newToken> must be allocated locally and will be disposed with a 'DisposeObj' call later by
the SyncML engine.

ENTRY uInt32 FilterSupport (CContext aContext, cAppCharP aFilterRules)

This function asks for filter support.
Parameters:

<aContext> The datastore context
<aFilterRules> The SyncML sends a list of filter rules. This function has to reply, up to which rule,
filters are supported (and switched on now). Data is formatted as multiline
aa:bb<CRLF>cc:dd[<CRLF>]

Returns:
Up to <n> filters are supported (and switched on) for this context If 0 will be returned, no field of
<aFilterRules> are supported.

Page 42

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

ENTRY TSyError FinalizeLocalID (CContext aContext, const ItemID aID, ItemID updID)

This routine updates a temporary <aid> to an <updid> at the end For cached systems which assign
IDs at the end of a run.
Parameters:

<aContext> The datastore context.
<aID> Database key of dataset to be updated
<updID>

• Input: NULL is assigned as default value to <updID.item> and <updID.parent>.
• Output: The updated database key for <aID>. Can be NULL, if the same as <aID>

Returns:
error code

• LOCERR_OK (=0), if successful
• DB_Forbidden (=403), if <aItemData> can't be resolved
• DB_NotFound (=404), if unknown <aID>
• LOCERR_NOTIMP (=20030), if no finalizing is needed at all
• ... or any other SyncML error code, see Reference Manual

NOTE: <updID> must either contain NULL references (if the same as <aID>), or the memory
for <updID.item> must be allocated locally. The SyncML engine will call 'DisposeObj' later for
<updID.item> to release the memory. <updID.parent>should be always NULL.

ENTRY TSyError InsertItem (CContext aContext, cAppCharP aItemData, ItemID aID)

This routine inserts a new dataset to the database. The assigned new ItemID <aId> will be re-
turned.
Parameters:

<aContext> The datastore context.
<aItemData> The data, formatted as multiline aa:bb<CRLF>cc:dd[<CRLF>]
<aID> Database key of the new dataset.

Returns:
error code

• LOCERR_OK (=0), if successful
• DB_DataMerged (=207), if successful, but "ReadItem" requested to inform about updates
• DB_Forbidden (=403), if <aItemData> can't be resolved
• DB_Full (=420), if not enough space in the DB
• ... or any other SyncML error code, see Reference Manual

NOTE: The memory for <aItemID> must be allocated locally. The SyncML engine will call 'Dis-
poseObj' later for <aItemID>, to release the memory

ENTRY TSyError InsertItemAsKey (CContext aContext, appPointer aItemKey, ItemID aID)

ENTRY TSyError InsertMapItem (CContext aContext, MapID mID)

Map table handling: Insert a map item of this context
Parameters:

<aContext> The datastore context
<mID> MapID (with <localID>,<remoteID> and <flags>). A new item with <localid> will be added.

Returns:
error code, if this MapID can't be inserted, or if already existing

USED ONLY WITH <plugin_datastoredadmin>

Page 43

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

ENTRY TSyError LoadAdminData (CContext aContext, cAppCharP aLocalDB, cAppCharP
aRemoteDB, appCharP * adminData)

This function gets the stored information about the record with the four paramters: <sDevKey>,
<sUsrKey>, <aLocalDB>, <aRemoteDB>.

• <plugin_deviceadmin>yes</plugin_deviceadmin>: Admin/Map routines will be used.

Parameters:
<aContext> The datastore context
<aLocalDB> Name of the local DB
<aRemoteDB> Name of the remote DB
<adminData> The data, saved with the last 'SaveAdminData' call

Returns:
error code 404 (NotFound), if record is not (yet) available, 0 (no error) if admin data found

NOTE: <sDevKey> and <sUsrKey> have been passed with 'CreateContext' already. The plug-in
module must have stored them within the datastore context.
USED ONLY WITH <plugin_datastoredadmin>

ENTRY TSyError Module_Capabilities (CContext mContext, appCharP * mCapabilities)

Get the module's capabilities Currently the SyncML engine currently understands and supports:
• "plugin_sessionauth"
• "plugin_deviceadmin"
• "plugin_datastoreadmin"
• "plugin_datastore"

If one of these identifiers will be defined as "no" (e.g. "plugin_sessionauth:no"), the according
routines will not be connected and used.
NOTE: The <mCapabilities> can be allocated with "StrAlloc" (SDK_util.h) for C/C++
Parameters:

<mContext> The module context.
<mCapabilities> Returns the module's capabilities as multiline aa:bb<CRLF>cc:dd[<CRLF>]

Returns:
error code

ENTRY TSyError Module_CreateContext (CContext * mContext, cAppCharP moduleName,
cAppCharP subName, cAppCharP mContextName, DB_Callback mCB)

Create a module context <mContext> This routine will be called as the 1st or 2nd call, when this
module will be connected. (The 1st call is usually a 'Module_Version(0)' call outside any con-
text).
It will be called not only once, but for each session and datastore context, as defined at the XML
config file. This routine can return error 20028 (LOCERR_ALREADY), if already created. This
will be treated not as an error. For this case, it must return the same <mContext> as for the former
call(s).
NOTE: The module context can exist once and can be shared for all plug-in accesses. Please note,
that write access to such a common module context structure must be thread-safe, when accessed
from the session or datastore context. All the 'Module_CreateContext' calls for this module will be
called sequentially by one thread. The plug-in programmer is responsible not to re-initialize the
context for subsequent calls.
If the module name at the XML config file is defined as "aaa!bbb!ccc" it will be passed as "aaa" to
<moduleName> and "bbb!ccc" to <subName>. This mechanism can be used to cascade plug-in

Page 44

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

modules, where the next module gets "bbb" as <moduleName> and "ccc" as <subName>. The JNI
plug-in for Java is using this structure to address the JNI plug-in and its assigned Java class.
Parameters:

<mContext> Returns a value, which allows to identify this module context. Allowed values: Anything
except 0, which is reserved for no context.
<moduleName> Name of this plug-in
<subName> Name of sub module (if available)
<mContextName> Name of the (datastore) context, e.g. "contacts"; this string is empty for calll con-
cerning the session.
<mCB> DB_Callback structure for module logging

Returns:
error code, if context could not be created (e.g. not enough memory), 0 if context successfully created.

ENTRY TSyError Module_DeleteContext (CContext mContext)

This routine will be called as the last call, before this module is disconnected. The SyncML engine
will call 'Module_DisposeObj' (if required) before this call
NOTE: This routine will be called ONLY, if the server stops in a controlled way. Its good pro-
gramming practice not to wait for this 'DeleteContext' call.
Parameters:

<mContext> The module context.
Returns:

error code

ENTRY void Module_DisposeObj (CContext mContext, void * memory)

Disposes memory, which has been allocated within the module context. (At the moment this is
only the capabilities string). 'Module_DisposeObj' can occur at any time within <mContext>.
NOTE: - If <mCapabilities> has been allocated with "StrAlloc", use "Str_Dispose" (SDK_util.h)
to release the memory again.

• If it is defined as const within the plugin module (the module itself knows about !), this routine can be
implemented empty.

Parameters:
<mContext> The module context.
<memory> Dispose allocated memory.

Returns:
-

ENTRY TSyError Module_PluginParams (CContext mContext, cAppCharP mConfigParams,
CVersion engineVersion)

The module's config params will be sent to the plug-in. It can be used for access path definitions
or other things. The <plugin_params> can be defined individually for each session and datastore.
The SyncML engine checks the syntax, but not the content. This routine should return an error
20010 (LOCERR_CFGPARSE), if one of these parameters is not supported.
EXAMPLE: Definition at XML config file:
 <plugin_params>
 <datapath>/var/log/sysync</datapath>
 <ultimate_answer>42</ultimate_answer>
 </plugin_params>
will be passed as:

Page 45

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

 "datapath:/var/log/sysync
 ultimate_answer:42"
NOTE: Module_PluginParams will be called ALWAYS for each module context, even if no plug-
in parameter is defined. This allows to react consistently on parameters, which are not always
available.
Parameters:

<mContext> The module context.
<mConfigParams> The plugin params as multiline aa:bb<CRLF>cc:dd[<CRLF>]
<engineVersion> The SyncML engine's version

Returns:
error code

ENTRY CVersion Module_Version (CContext mContext)

Get the module's version.
NOTE: The SyncML will take decisions depending on this version number, so the plug-in devel-
oper should not change the values at the delivered sample code. Plugin_Version(short build-
Number) of 'SDK_util' should be used. The <buildNumber> can be defined by the user.
NOTE: This function can be called by the engine outside any context with <mContext> = 0. For
this case, any callback is not permitted (as no DB_Callback is available).
Parameters:

<mContext> The module context (0, if none).
Returns:

current version as SDK_VERSION_MAJOR | SDK_VERSION_MINOR) | SDK_SUBVERSION |
buildNumber

ENTRY TSyError MoveItem (CContext aContext, const ItemID aID, cAppCharP newParen-
tID)

This routine moves <aID.item> from <aID.parent> to <newParentID>
Parameters:

<aContext> The datastore context.
<aID> ItemID (with <item>,<parent>) to be moved.
<newParentID> New parent ID for <aID>

Returns:
error code

• LOCERR_OK (=0), if successful
• DB_NotFound (=404), if unknown <newParentID>
• DB_Full (=420), if not enough space in the DB
• ... or any other SyncML error code, see Reference Manual

ENTRY TSyError ReadBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID,
void ** aBlkPtr, ulong * aBlkSize, ulong * aTotSize, bool aFirst, bool * aLast)

This routine reads the specific binary logic block <aID>,<aBlobID> from the database.
Parameters:

<aContext> The datastore context.
<aID> ItemID (with <item>,<parent>).
<aBlobID> The assigned ID of the blob.
<aBlkPtr> Position and size (in bytes) of the blob block.
<aBlkSize>

• Input: Maximum size (in bytes) of the blob block to be read. If <blkSize> is 0, the result size is not li-
mited.

• Output: Size (in bytes) of the blob block. <blkSize> must not be larger than its input value.

Page 46

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

<aTotSize> Total size of the blob (in bytes), can be also 0, if not available, e.g. for a stream.
<aFirst> (Input)

• true : Engine asks for the first block of this blob.
• false: Engine asks for the next block of this blob.

<aLast> (Output)
• true : This is the last part (or the whole) blob.
• false: More blocks will follow.

Returns:
error code, if not ok (e.g. invalid <aItemID>,<aBlobID>)

NOTE 1) The memory at <blkPtr>,<blkSize> must be allocated locally. The SyncML engine will
call 'DisposeObj' later for <blkPtr>, to release the memory.
NOTE 2) Empty blobs are allowed, <blkSize> and <totSize> must be set to 0, <blkPtr> can be
undefined, <aLast> must be true. No 'DisposeObj' call is required for this case.
NOTE 3) The SyncML engine can change to read another blob before having read the whole blob.
It will never resume reading of this incomplete blob, but start reading again with <aFirst> = true.

ENTRY TSyError ReadItem (CContext aContext, const ItemID aID, appCharP * aItemData)

This routine reads the contents of a specific ItemID <aID> from the database.
Parameters:

<aContext> The datastore context.
<aID> The assigned ItemID in the database
<aItemData> Returns the data, formatted as multiline aa:bb<CRLF>cc:dd[<CRLF>]

Returns:
error code, if not ok (e.g. invalid <aItemID>)

NOTE: The memory for <aItemData> must be allocated locally. The SyncML engine will call
'DisposeObj' later for <aItemData>, to release again its memory.

ENTRY TSyError ReadItemAsKey (CContext aContext, const ItemID aID, appPointer aItem-
Key)

ENTRY TSyError ReadNextItem (CContext aContext, ItemID aID, appCharP * aItemData,
sInt32 * aStatus, bool aFirst)

This routine reads the next ItemID from the database. <allfields> of 'ContextSupport' ("Read-
NextItem:allfields") and <aFilterRules> of 'FilterSupport' must be considered. If <aFirst> is true,
the routine must return the first element (again).
Parameters:

<aContext> The datastore context.
<aID> The assigned ItemID in the database; will be ignored by the SyncML engine, if <aStatus> = 0
<aItemData> The data, formatted as multiline aa:bb<CRLF>cc:dd[<CRLF>]; will be ignored by the
SyncML engine, if <aStatus> = 0
<aStatus>

• ReadItem_EOF (=0) for none (=eof),
• ReadItem_Changed (=1) for a changed item,
• ReadItem_Unchanged (=2) for unchanged item.
• ReadItem_Resumed (=3) for a changed item (since resumed)

<aFirst>
• true: the routine must return the first element
• false: the routine must return the next element

Page 47

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

Returns:
error code, if not ok. No datasets found is a success as well !

NOTE: The memory for <aID> and <aItemData> must be allocated locally. The SyncML engine
will call 'DisposeObj' later for these objects to release the memory again. It needn't to be allocated,
if <aStatus> is ReadItem_EOF.
NOTE: By default, the SyncML engine asks for <aID> only. <aItemData> can be returned, if
anyway available or <aItemData> must be returned, if the engine asks for it (when calling "Read-
NextItem:allfields" at 'ContextSupport' with <allfields>).

ENTRY TSyError ReadNextItemAsKey (CContext aContext, ItemID aID, appPointer aItem-
Key, sInt32 * aStatus, bool aFirst)

ENTRY bool ReadNextMapItem (CContext aContext, MapID mID, bool aFirst)

Map table handling: Get the next map item of this context. If <aFirst> is true, the routine must
start to return the first element
Parameters:

<aContext> The datastore context
<mID> MapID (with <localID>,<remoteID> and <flags>).
<aFirst> Starting with the first MapID. When creating a context, the first call will get the first MapID,
even if <aFirst> is false.

Returns:
• true: as long as there is a MapID available, which must be assigned to <mID>
• false: if there is no more MapID. Nothing must be assigned to <mID>

USED ONLY WITH <plugin_datastoredadmin>

ENTRY TSyError SaveAdminData (CContext aContext, cAppCharP adminData)

This functions stores the new <adminData> for this context
Parameters:

<aContext> The datastore context
<adminData> The new set of admin data to be stored, will be loaded again with the next 'LoadAdmin-
Data' call.

Returns:
error code, if data could not be saved (e.g. not enough memory); 0 if successfully created.

USED ONLY WITH <plugin_datastoredadmin>

ENTRY TSyError Session_AdaptItem (CContext sContext, appCharP * sItemData1,
appCharP * sItemData2, appCharP * sLocalVars, uInt32 sIdentifier)

This function adapts itemData
Parameters:

<sContext> The session context
<aItemData1> The 1st item's data
<aItemData2> The 2nd item's data
<aLocalVars> The local vars
<aIdentifier> To identify, where it is called

Returns:
error code

Page 48

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

NOTE: The memory for adapted strings must be allocated locally. The SyncML engine will call
'DisposeObj' later, to release again its memory. One or more strings can be returned unchanged as
well.

ENTRY TSyError Session_CheckDevice (CContext sContext, cAppCharP aDeviceID,
appCharP * sDevKey, appCharP * nonce)

Check the database entry of <aDeviceID> and return its <nonce> string. If <aDeviceID> is not yet
available at the plug-in, return "" for <nonce>
Parameters:

<sContext> The session context
<aDeviceID> The assigned device ID string
<sDevKey> The device key string (will be used for datastore accesses later)
<nonce> The nonce string of the last session If <aDeviceID> is not yet available, return "" for <nonce>
and error code 0.

Returns:
error code 403 (Forbidden), if plugin_deviceadmin is not supported; 0, if successful

USED ONLY WITH <plugin_deviceadmin>

ENTRY TSyError Session_CreateContext (CContext * sContext, cAppCharP sessionName,
DB_Callback sCB)

By default the session context will be handled by the ODBC interface. The session context of this
plug-in module will be used only, if <server type="plugin"> and <plugin_module> is defined (
<plugin_module>name_of_the_plugin</plugin_module>). <plugin_params> can be defined indi-
vidually.
Parameters:

<sContext> Returns a value, which allows to identify this session context.
<sessionName> Name of this session
<sCB> DB_Callback structure for session logging

Returns:
error code, if context could not be created (e.g. not enough memory) 0 if context successfully created,

Flags (at the XML config file):
• <plugin_deviceadmin>yes</plugin_deviceadmin>: "Session_CheckDevice", "Session_GetNonce"

"Session_SaveNonce" and "Session_SaveDeviceInfo" will be used.

• <plugin_sessionauth>yes</plugin_sessionauth>: "Session_PasswordMode", "Session_Login" and
"Session_Logout" will be used.

ENTRY TSyError Session_DeleteContext (CContext sContext)

Delete a session context. No access to <sContext> will be done after this call
Parameters:

<sContext> The session context
Returns:

error code, if context could not be deleted.

ENTRY void Session_DispItems (CContext sContext, bool allFields, cAppCharP speci-
ficItem)

Writes the context of all items to dbg output path This routine is implemented for debug purposes
only and will NOT BE CALLED by the SyncML engine. Can be implemented empty
Parameters:

Page 49

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

<sContext> The session context
<allFields> true : all fields, also empty ones, will be displayed; false: only fields <> "" will be shown
<specificItem> "" : all items will be shown; else shows the <specificItem>

Returns:
-

ENTRY void Session_DisposeObj (CContext sContext, void * memory)

Disposes memory, which has been allocated within the session context. 'Session_DisposeObj' can
occur at any time within <sContext>.
Parameters:

<sContext> The session context.
<memory> Dispose allocated memory.

Returns:
-

ENTRY TSyError Session_GetDBTime (CContext sContext, appCharP * currentDBTime)

Get the current DB time of <sContext>
Parameters:

<sContext> The session context
<currentDBTime> The current time of the plugin's DB (as ISO8601 format).

Returns:
error code 403 (Forbidden), if plugin_deviceadmin is not supported; 404 (NotFound), if not available ->
the engine creates its own time 0, if successful

ENTRY TSyError Session_GetNonce (CContext sContext, appCharP * nonce)

Get a new nonce from the database. If this routine returns an error, the SyncML engine will create
its own nonce.
Parameters:

<sContext> The session context
<nonce> A valid new nonce value (for the assigned device ID).

Returns:
error code 404 (NotFound), if no <nonce> has been generated; 0, if a valid <nonce> has been generated

USED ONLY WITH <plugin_deviceadmin>

ENTRY TSyError Session_Login (CContext sContext, cAppCharP sUsername, appCharP *
sPassword, appCharP * sUsrKey)

Get <sUsrKey> of <sUsername>,<sPassword> in the session context.
Parameters:

<sContext> The session context
<sUsername> The user name ...
<sPassword> ... and the password. <sPassword> is an input parameter for 'Password_ClrTxt_IN' mode
and an output parameter for 'Password_ClrText_OUT' and 'Password_MD5_OUT' modes.
<sUsrKey> Returns the internal reference key, which will be passed to to the datastore contexts later.

Returns:
error code 403 (Forbidden), if plugin_sessionauth is not supported; 0, if successful

USED ONLY WITH <plugin_sessionauth>

ENTRY TSyError Session_Logout (CContext sContext)

Logout for this session context
Parameters:

Page 50

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

<sContext> The session context
Returns:

error code 403 (Forbidden), if plugin_sessionauth is not supported; 0, if successful
USED ONLY WITH <plugin_sessionauth>

ENTRY sInt32 Session_PasswordMode (CContext sContext)

Get the password mode. There are currently 4 different password modes supported.
Parameters:

<sContext> The session context
Returns:

• Password_ClrText_IN : 'SessionLogin' will get clear text password
• Password_ClrText_OUT : " must return clear text password
• Password_MD5_OUT : " must return MD5 coded password
• Password_MD5_Nonce_IN: " will get MD5B64(MD5B64(user:pwd):nonce)

USED ONLY WITH <plugin_sessionauth>

ENTRY TSyError Session_SaveDeviceInfo (CContext sContext, cAppCharP aDeviceInfo)

Save the device info for <sContext>
Parameters:

<sContext> The session context
<aDeviceInfo> More information about the assigned device (for DB and logging)

Returns:
error code 403 (Forbidden), if plugin_deviceadmin is not supported; 0, if successful

USED ONLY WITH <plugin_deviceadmin>

ENTRY TSyError Session_SaveNonce (CContext sContext, cAppCharP nonce)

Save the new nonce (which will be expected to be returned in the next session for this device ID.
Parameters:

<sContext> The session context
<nonce> New <nonce> for the next session (of the assigned device ID)

Returns:
error code 403 (Forbidden), if plugin_deviceadmin is not supported; 0, if successful

USED ONLY WITH <plugin_deviceadmin>

ENTRY void Session_ThreadMayChangeNow (CContext sContext)

Due to the architecture of the SyncML engine, the system may run in a multithread environment.
The consequence is that each routine of this plugin module can be called by a different thread.
Normally this is not a problem, nevertheless this routine notifies about thread changes in <sCon-
text>. It can be ignored (=implemented empty), if not really needed.
Parameters:

<sContext> The session context
Returns:

-

ENTRY TSyError StartDataRead (CContext aContext, cAppCharP lastToken, cAppCharP
resumeToken)

This routine initializes reading from the database StartDataRead must prepare the database to re-
turn the objects of this context.

Page 51

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

Parameters:
<aContext> The datastore context.
<lastToken> The value which has been returned by this module at the last "EndDataWrite" call will be
given. It will be "", when called the first time. Normally this token is an ISO8601 formatted string
which represents the module's current time (at the beginning of a session). It will be used to decide at
'ReadNextItem' whether a record has been changed.
<resumeToken> Token for Suspend/Resume mode.

Returns:
error code

ENTRY TSyError StartDataWrite (CContext aContext)

This routine initializes writing to the database
Parameters:

<aContext> The datastore context.
Returns:

error code, if not ok (e.g. invalid select options)

ENTRY void ThreadMayChangeNow (CContext aContext)

Due to the architecture of the SyncML engine, the system may run in a multithread environment.
The consequence is that each routine of this API module can be called by a different thread. Nor-
mally this is not a problem, nevertheless this routine notifies about thread changes in <aContext>.
It can be ignored (=implemented empty), if not really needed.
Parameters:

<aContext> The datastore context.
Returns:

-

ENTRY TSyError UpdateItem (CContext aContext, cAppCharP aItemData, const ItemID aID,
ItemID updID)

This routine updates an existing dataset of the database
Parameters:

<aContext> The datastore context.
<aItemData> The data, formatted as multiline aa:bb<CRLF>cc:dd[<CRLF>]
<aID> Database key of dataset to be updated
<updID>

• Input: NULL is assigned as default value to <updID.item> and <updID.parent>.
• Output: The updated database key for <aID>. Can be NULL, if the same as <aID>

Returns:
error code

• LOCERR_OK (=0), if successful
• DB_Forbidden (=403), if <aItemData> can't be resolved
• DB_NotFound (=404), if unknown <aID>
• DB_Full (=420), if not enough space in the DB
• ... or any other SyncML error code, see Reference Manual

NOTE: <updID> must either contain NULL references (if the same as <aID>), or the memory
for <updID.item>,<updID.parent> must be allocated locally. The SyncML engine will call 'Dis-
poseObj' later for <updID.item> and <updID.parent> to release the memory. <updID.parent> can
be NULL, if the hierarchical model is not supported.

Page 52

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

ENTRY TSyError UpdateItemAsKey (CContext aContext, appPointer aItemKey, const
ItemID aID, ItemID updID)

ENTRY TSyError UpdateMapItem (CContext aContext, MapID mID)

Map table handling: Update a map item of this context
Parameters:

<aContext> The datastore context
<mID> MapID (with <localID>,<remoteID> and <flags>). If there is already a MapID element with
localID, it will be update, else created.

Returns:
error code, if this MapID can't be updated (e.g. not yet existing).

USED ONLY WITH <plugin_datastoredadmin>

ENTRY TSyError WriteBlob (CContext aContext, const ItemID aID, cAppCharP aBlobID,
void * aBlkPtr, ulong aBlkSize, ulong aTotSize, bool aFirst, bool aLast)

This routine writes the specific binary logic block <blobID> to the database.
Parameters:

<aContext> The datastore context.
<aID> ItemID (with <item>,<parent>).
<aBlobID> The assigned ID of the blob.
<aBlkPtr>
<aBlkSize> Position and size (in bytes) of the blob block.
<aTotSize> Total size of the blob (in bytes), Can be also 0, if not available, e.g. for a stream.
<aFirst>

• true : this is the first block of the blob.
• false: this is the next block.

<aLast>
• true : this is the last block.
• false: more blocks will follow.

Returns:
error code, if not ok (e.g. invalid <aID>,<aBlobID>)

NOTE: Empty blobs are possible, <blkSize> and <totSize> will be set to 0, <blkPtr> will be
NULL, <aFirst> and <aLast> will be true.

ENTRY void WriteLogData (CContext aContext, cAppCharP logData)

This functions writes <logData> for this context Can be implemented empty, if not needed.
Parameters:

<aContext> The datastore context.
<logData> Logging information, formatted as multiline aa:bb<CRLF>cc:dd[<CRLF>]

Returns:
-

Page 53

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

9. UIApi Interface description

9.1 Functions in the UI_Call_In call-in structure

The following list only shows the function prototypes. These are required when accessing the
UIApi from plain C. See documentation of the TEngineModuleBase class members for details.
The routines shown here are all also implemented as methods of TEngineModuleBase (and are
available in the wrapper class TEngineModuleBridge which facilitates access from C++ code
and is part of the SDK), and have similar signatures (but no aCB first argument because the
callback structure is a class member and using by-reference arguments instead of plain pointers
where appropriate).

• void DebugDB (void *aCB, cAppCharP aParams)
• void DebugExotic (void *aCB, cAppCharP aParams)
• void DebugBlock (void *aCB, cAppCharP aTag, cAppCharP aDesc, cAppCharP aAttrText)
• void DebugEndBlock (void *aCB, cAppCharP aTag)
• void DebugEndThread (void *aCB)

• TSyError SetStringMode (void *aCB, uInt16 aCharSet, uInt16 aLineEndMode, bool aBigEndian)
• TSyError InitEngineXML (void *aCB, cAppCharP aConfigXML)
• TSyError InitEngineFile (void *aCB, cAppCharP aConfigFilePath)
• TSyError InitEngineCB (void *aCB, TXMLConfigReadFunc aReaderFunc, void *aContext)
• TSyError OpenSession (void *aCB, appPointer *aSessionH, uInt32 aSelector, cAppCharP aSessionName)
• TSyError OpenSessionKey (void *aCB, appPointer aSessionH, appPointer *aKeyH, uInt16 aMode)
• TSyError SessionStep (void *aCB, appPointer aSessionH, uInt16 *aStepCmd, TEngineProgressInfo

*aInfoP)
• TSyError GetSyncMLBuffer (void *aCB, appPointer aSessionH, bool aForSend, appPointer *aBuffer,

memSize *aBufSize)
• TSyError RetSyncMLBuffer (void *aCB, appPointer aSessionH, bool aForSend, memSize aRetSize)
• TSyError ReadSyncMLBuffer (void *aCB, appPointer aSessionH, appPointer aBuffer, memSize aBufSize,

memSize *aValSize)
• TSyError WriteSyncMLBuffer (void *aCB, appPointer aSessionH, appPointer aBuffer, memSize aVal-

Size)
• TSyError CloseSession (void *aCB, appPointer aSessionH)
• TSyError OpenKeyByPath (void *aCB, appPointer *aKeyH, appPointer aParentKeyH, cAppCharP aPath,

uInt16 aMode)
• TSyError OpenSubkey (void *aCB, appPointer *aKeyH, appPointer aParentKeyH, sInt32 aID, uInt16

aMode)
• TSyError DeleteSubkey (void *aCB, appPointer aParentKeyH, sInt32 aID)
• TSyError GetKeyID (void *aCB, appPointer aKeyH, sInt32 *aID)
• TSyError SetTextMode (void *aCB, appPointer aKeyH, uInt16 aCharSet, uInt16 aLineEndMode, bool

aBigEndian)
• TSyError SetTimeMode (void *aCB, appPointer aKeyH, uInt16 aTimeMode)
• TSyError CloseKey (void *aCB, appPointer aKeyH)

Page 54

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

• TSyError GetValue (void *aCB, appPointer aKeyH, cAppCharP aValName, uInt16 aValType, appPointer
aBuffer, memSize aBufSize, memSize *aValSize)

• TSyError GetValueByID (void *aCB, appPointer aKeyH, sInt32 aID, sInt32 aArrayIndex, uInt16
aValType, appPointer aBuffer, memSize aBufSize, memSize *aValSize)

• sInt32 GetValueID (void *aCB, appPointer aKeyH, cAppCharP aName)
• TSyError SetValue (void *aCB, appPointer aKeyH, cAppCharP aValName, uInt16 aValType, cAppPointer

aBuffer, memSize aValSize)
• TSyError SetValueByID (void *aCB, appPointer aKeyH, sInt32 aID, sInt32 aArrayIndex, uInt16 aValType,

cAppPointer aBuffer, memSize aValSize)

9.2 TEngineModuleBase Class Reference

9.2.1 Public Member Function Overview
• TEngineModuleBase ()
• virtual ~TEngineModuleBase ()
• TSyError Connect (string aEngineName, unsigned long aPrgVersion=0, unsigned short aDebug-

Flags=DBG_PLUGIN_NONE)
• virtual TSyError Init ()=0
• virtual TSyError SetStringMode (uInt16 aCharSet, uInt16 aLineEndMode=LEM_CSTR, bool aBigEn-

dian=false)=0
Set the global mode for string paramaters (when never called, default params are UTF-8 with C-
style line ends).

• virtual TSyError InitEngineXML (cAppCharP aConfigXML)=0
init object, optionally passing XML config text in memory

• virtual TSyError InitEngineFile (cAppCharP aConfigFilePath)=0
init object, optionally passing a open FILE for reading config

• virtual TSyError InitEngineCB (TXMLConfigReadFunc aReaderFunc, void *aContext)=0
init object, optionally passing a callback for reading config

• virtual TSyError OpenSession (appPointer &aNewSessionH, uInt32 aSelector=0, cAppCharP aSession-
Name=NULL)=0
Open a session.

• virtual TSyError OpenSessionKey (appPointer aSessionH, appPointer &aNewKeyH, uInt16 aMode)=0
open session specific runtime parameter/settings key

• virtual TSyError SessionStep (appPointer aSessionH, uInt16 &aStepCmd, TEngineProgressInfo
*aInfoP=NULL)=0
Executes sync session or other sync related activity step by step.

• virtual TSyError GetSyncMLBuffer (appPointer aSessionH, bool aForSend, appPointer &aBuffer, mem-
Size &aBufSize)=0
Get access to SyncML message buffer.

• virtual TSyError RetSyncMLBuffer (appPointer aSessionH, bool aForSend, memSize aProcessed)=0
Return SyncML message buffer to engine.

• virtual TSyError ReadSyncMLBuffer (appPointer aSessionH, appPointer aBuffer, memSize aBufSize,
memSize &aMsgSize)=0
Read data from SyncML message buffer.

Page 55

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

• virtual TSyError WriteSyncMLBuffer (appPointer aSessionH, appPointer aBuffer, memSize aMsgSize)=0
Write data to SyncML message buffer.

• virtual TSyError CloseSession (appPointer aSessionH)=0
Close a session.

• virtual TSyError OpenKeyByPath (appPointer &aNewKeyH, appPointer aParentKeyH, cAppCharP aPath,
uInt16 aMode)=0
open Settings key by path specification

• virtual TSyError OpenSubkey (appPointer &aNewKeyH, appPointer aParentKeyH, sInt32 aID, uInt16
aMode)=0
open Settings subkey key by ID or iterating over all subkeys

• virtual TSyError DeleteSubkey (appPointer aParentKeyH, sInt32 aID)=0
delete Settings subkey key by ID

• virtual TSyError GetKeyID (appPointer aKeyH, sInt32 &aID)=0
Get key ID of currently open key. Note that the Key ID is only locally unique within the parent key.

• virtual TSyError SetTextMode (appPointer aKeyH, uInt16 aCharSet, uInt16 aLineEndMode=LEM_CSTR,
bool aBigEndian=false)=0
Set text format parameters (when never called, default params are those set with global Set-
StringMode()).

• virtual TSyError SetTimeMode (appPointer aKeyH, uInt16 aTimeMode)=0
Set time format parameters.

• virtual TSyError CloseKey (appPointer aKeyH)=0
Closes a key opened by OpenKeyByPath() or OpenSubKey().

• virtual TSyError GetValue (appPointer aKeyH, cAppCharP aValName, uInt16 aValType, appPointer aBuf-
fer, memSize aBufSize, memSize &aValSize)=0
Reads a named value in specified format into passed memory buffer.

• virtual sInt32 GetValueID (appPointer aKeyH, cAppCharP aName)=0
get value's ID for use with Get/SetValueByID()

• virtual TSyError GetValueByID (appPointer aKeyH, sInt32 aID, sInt32 aArrayIndex, uInt16 aValType,
appPointer aBuffer, memSize aBufSize, memSize &aValSize)=0
Reads a named value in specified format into passed memory buffer.

• virtual TSyError SetValue (appPointer aKeyH, cAppCharP aValName, uInt16 aValType, cAppPointer
aBuffer, memSize aValSize)=0
Writes a named value in specified format passed in memory buffer.

• virtual TSyError SetValueByID (appPointer aKeyH, sInt32 aID, sInt32 aArrayIndex, uInt16 aValType,
cAppPointer aBuffer, memSize aValSize)=0
Writes a named value in specified format passed in memory buffer.

• TSyError CloseKeyAndNULL (appPointer &aKeyH)
Closes a key and nulls the handle.

• TSyError CloseSessionAndNULL (appPointer &aSessionH)
Closes a session and nulls the handle.

Page 56

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

9.2.2 Member Function Documentation

TSyError sysync::TEngineModuleBase::Connect (string aEngineName, unsigned long aPr-
gVersion = 0, unsigned short aDebugFlags = DBG_PLUGIN_NONE)

virtual TSyError sysync::TEngineModuleBase::SetStringMode (uInt16 aCharSet, uInt16
aLineEndMode = LEM_CSTR, bool aBigEndian = false) [pure virtual]

Set the global mode for string paramaters (when never called, default params are UTF-8 with C-
style line ends).
Parameters:

aCharSet[in] charset
aLineEndMode[in] line end mode (default is C-lineends of the platform (almost always LF))
aBigEndian[in] determines endianness of UTF16 text (defaults to little endian = intel order)

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::InitEngineXML (cAppCharP aConfigXML)
[pure virtual]

init object, optionally passing XML config text in memory

Parameters:
aConfigXML[in] NULL or empty string if no external config needed, config text otherwise

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::InitEngineFile (cAppCharP aConfigFilePath)
[pure virtual]

init object, optionally passing a open FILE for reading config

Parameters:
aConfigFilePath[in] path to config file

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::InitEngineCB (TXMLConfigReadFunc
aReaderFunc, void * aContext) [pure virtual]

init object, optionally passing a callback for reading config

Parameters:
aReaderFunc[in] callback function which can deliver next chunk of XML config data
aContext[in] free context pointer passed back with callback

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 57

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

virtual TSyError sysync::TEngineModuleBase::OpenSession (appPointer & aNewSessionH,
uInt32 aSelector = 0, cAppCharP aSessionName = NULL) [pure virtual]

Open a session.

Parameters:
aNewSessionH[out] receives session handle for all session execution calls
aSelector[in] selector, depending on session type. For multi-profile clients: profile ID to use
aSessionName[in] a text name/id to identify a session, useage depending on session type.

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::OpenSessionKey (appPointer aSessionH,
appPointer & aNewKeyH, uInt16 aMode) [pure virtual]

open session specific runtime parameter/settings key

Note:
key handle obtained with this call must be closed BEFORE SESSION IS CLOSED!

Parameters:
aSessionH[in] session handle obtained with OpenSession
aNewKeyH[out] receives the opened key's handle on success
aMode[in] the open mode

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::SessionStep (appPointer aSessionH, uInt16 &
aStepCmd, TEngineProgressInfo * aInfoP = NULL) [pure virtual]

Executes sync session or other sync related activity step by step.

Parameters:
aSessionH[in] session handle obtained with OpenSession
aStepCmd[in/out] step command (STEPCMD_xxx):

• tells caller to send or receive data or end the session etc.
• instructs engine to suspend or abort the session etc.

aInfoP[in] pointer to a TEngineProgressInfo structure, NULL if no progress info needed
Returns:

LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::GetSyncMLBuffer (appPointer aSessionH,
bool aForSend, appPointer & aBuffer, memSize & aBufSize) [pure virtual]

Get access to SyncML message buffer.

Parameters:
aSessionH[in] session handle obtained with OpenSession
aForSend[in] direction send/receive
aBuffer[out] receives pointer to buffer (empty for receive, full for send)
aBufSize[out] receives size of empty or full buffer

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 58

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

virtual TSyError sysync::TEngineModuleBase::RetSyncMLBuffer (appPointer aSessionH,
bool aForSend, memSize aProcessed) [pure virtual]

Return SyncML message buffer to engine.

Parameters:
aSessionH[in] session handle obtained with OpenSession
aForSend[in] direction send/receive
aProcessed[in] number of bytes put into or read from the buffer

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::ReadSyncMLBuffer (appPointer aSessionH,
appPointer aBuffer, memSize aBufSize, memSize & aMsgSize) [pure virtual]

Read data from SyncML message buffer.

Parameters:
aSessionH[in] session handle obtained with OpenSession
aBuffer[in] pointer to buffer
aBufSize[in] size of buffer, maximum to be read
aMsgSize[out] size of data available in the buffer for read INCLUDING just returned data.

Note:
If the aBufSize is too small to return all available data LOCERR_TRUNCATED will be returned, and
the caller can repeat calls to ReadSyncMLBuffer to get the next chunk.

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::WriteSyncMLBuffer (appPointer aSessionH,
appPointer aBuffer, memSize aMsgSize) [pure virtual]

Write data to SyncML message buffer.

Parameters:
aSessionH[in] session handle obtained with OpenSession
aBuffer[in] pointer to buffer
aMsgSize[in] size of message to write to the buffer

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::CloseSession (appPointer aSessionH) [pure
virtual]

Close a session.

Note:
It depends on session type if this also destroys the session or if it may persist and can be re-opened.

Parameters:
aSessionH[in] session handle obtained with OpenSession

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 59

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

virtual TSyError sysync::TEngineModuleBase::OpenKeyByPath (appPointer & aNewKeyH,
appPointer aParentKeyH, cAppCharP aPath, uInt16 aMode) [pure virtual]

open Settings key by path specification

Parameters:
aNewKeyH[out] receives the opened key's handle on success
aParentKeyH[in] NULL if path is absolute from root, handle to an open key for relative access
aPath[in] the path specification as null terminated string
aMode[in] the open mode

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::OpenSubkey (appPointer & aNewKeyH,
appPointer aParentKeyH, sInt32 aID, uInt16 aMode) [pure virtual]

open Settings subkey key by ID or iterating over all subkeys

Parameters:
aNewKeyH[out] receives the opened key's handle on success
aParentKeyH[in] handle to the parent key
aID[in] the ID of the subkey to open, or KEYVAL_ID_FIRST/KEYVAL_ID_NEXT to iterate over
existing subkeys or KEYVAL_ID_NEW to create a new subkey
aMode[in] the open mode

Returns:
LOCERR_OK on success, DB_NoContent when no more subkeys are found with KEY-
VAL_ID_FIRST/KEYVAL_ID_NEXT or any other SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::DeleteSubkey (appPointer aParentKeyH,
sInt32 aID) [pure virtual]

delete Settings subkey key by ID

Parameters:
aParentKeyH[in] handle to the parent key
aID[in] the ID of the subkey to delete

Returns:
LOCERR_OK on success or any other SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::GetKeyID (appPointer aKeyH, sInt32 & aID)
[pure virtual]

Get key ID of currently open key. Note that the Key ID is only locally unique within the parent
key.

Parameters:
aKeyH[in] an open key handle
aID[out] receives the ID of the open key, which can be used to re-access the key within its parent using
OpenSubkey()

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 60

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

virtual TSyError sysync::TEngineModuleBase::SetTextMode (appPointer aKeyH, uInt16
aCharSet, uInt16 aLineEndMode = LEM_CSTR, bool aBigEndian = false) [pure virtual]

Set text format parameters (when never called, default params are those set with global Set-
StringMode()).

Parameters:
aKeyH[in] an open key handle
aCharSet[in] charset
aLineEndMode[in] line end mode (defaults to C-lineends of the platform (almost always LF))
aBigEndian[in] determines endianness of UTF16 text (defaults to little endian = intel order)

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::SetTimeMode (appPointer aKeyH, uInt16
aTimeMode) [pure virtual]

Set time format parameters.

Parameters:
aKeyH[in] an open key handle
aTimeMode[in] time mode, see TMODE_xxx (default is platform's lineratime_t when SetTimeMode()
is not used)

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::CloseKey (appPointer aKeyH) [pure vir-
tual]

Closes a key opened by OpenKeyByPath() or OpenSubKey().

Parameters:
aKeyH[in] an open key handle. Will be invalid when call returns with LOCERR_OK. Do not re-use!

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::GetValue (appPointer aKeyH, cAppCharP
aValName, uInt16 aValType, appPointer aBuffer, memSize aBufSize, memSize & aValSize)
[pure virtual]

Reads a named value in specified format into passed memory buffer.

Parameters:
aKeyH[in] an open key handle
aValName[in] name of the value to read
aValType[in] desired return type, see VALTYPE_xxxx
aBuffer[in/out] buffer where to store the data
aBufSize[in] size of buffer in bytes (ALWAYS in bytes, even if value is Unicode string)
aValSize[out] actual size of value. For VALTYPE_TEXT, size is string length (IN BYTES) excluding
NULL terminator Note that this will be set also when return value is LOCERR_BUFTOOSMALL, to
indicate the required buffer size

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 61

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

virtual sInt32 sysync::TEngineModuleBase::GetValueID (appPointer aKeyH, cAppCharP
aName) [pure virtual]

get value's ID for use with Get/SetValueByID()

Returns:
KEYVAL_ID_UNKNOWN when no ID available for name, ID of value otherwise

virtual TSyError sysync::TEngineModuleBase::GetValueByID (appPointer aKeyH, sInt32 aID,
sInt32 aArrayIndex, uInt16 aValType, appPointer aBuffer, memSize aBufSize, memSize &
aValSize) [pure virtual]

Reads a named value in specified format into passed memory buffer.

Parameters:
aKeyH[in] an open key handle
aID[in] ID of the value to read
aArrayIndex[in] 0-based array element index for array values.
aValType[in] desired return type, see VALTYPE_xxxx
aBuffer[in/out] buffer where to store the data
aBufSize[in] size of buffer in bytes (ALWAYS in bytes, even if value is Unicode string)
aValSize[out] actual size of value. For VALTYPE_TEXT, size is string length (IN BYTES) excluding
NULL terminator Note that this will be set also when return value is LOCERR_BUFTOOSMALL, to
indicate the required buffer size

Returns:
LOCERR_OK on success, LOCERR_OUTOFRANGE when array index is out of range SyncML or
LOCERR_xxx error code on other failure

virtual TSyError sysync::TEngineModuleBase::SetValue (appPointer aKeyH, cAppCharP
aValName, uInt16 aValType, cAppPointer aBuffer, memSize aValSize) [pure virtual]

Writes a named value in specified format passed in memory buffer.

Parameters:
aKeyH[in] an open key handle
aValName[in] name of the value to write
aValType[in] type of value passed in, see VALTYPE_xxxx
aBuffer[in] buffer containing the data
aValSize[in] size of value. For VALTYPE_TEXT, size can be passed as -1 if string is null terminated

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

virtual TSyError sysync::TEngineModuleBase::SetValueByID (appPointer aKeyH, sInt32 aID,
sInt32 aArrayIndex, uInt16 aValType, cAppPointer aBuffer, memSize aValSize) [pure vir-
tual]

Writes a named value in specified format passed in memory buffer.

Parameters:
aKeyH[in] an open key handle
aID[in] ID of the value to read
aArrayIndex[in] 0-based array element index for array values.
aValType[in] type of value passed in, see VALTYPE_xxxx
aBuffer[in] buffer containing the data
aValSize[in] size of value. For VALTYPE_TEXT, size can be passed as -1 if string is null terminated

Returns:

Page 62

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

TSyError sysync::TEngineModuleBase::CloseKeyAndNULL (appPointer & aKeyH) [inline]

Closes a key and nulls the handle.

Parameters:
aKeyH[in/out] an open key handle. Will be set to NULL on exit (to make sure it is not re-used)

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

TSyError sysync::TEngineModuleBase::CloseSessionAndNULL (appPointer & aSessionH)
[inline]

Closes a session and nulls the handle.

Parameters:
aSessionH[in] session handle obtained with OpenSession

Returns:
LOCERR_OK on success, SyncML or LOCERR_xxx error code on failure

Page 63

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

9.3 Settings keys supported in SyncML Client Engine

The settings keys and values accessible trough the OpenKeyXXXX, GetValueXXX, SetValu-
eXXX etc. block of routines (see 5.2.3) may vary depending on the version and type of client
library. The standard client library supports the following settings keys and values:

9.3.1 Global settings keys - accessed using
OpenKeyByPath()

/engineinfo general info about engine (read-only)
 version - SySync full version string
 platform - name of the platform
 name - name of the Synthesis SyncML engine product
 manufacturer - returns Synthesis AG
 comment - returns special release comment string, which might indicate special

builds like expiring demo versions etc.
 variantcode - returns variant classification code of the engine: 0=unknown,

1=STD, 2=PRO, 3=custom variant, 10=DEMO

/configvars configuration variables (predefined, volatile when written)
 platformname - name of the current platform
 platformvers - version string of the current platform
 globcfg_path - global system-wide config path (such as C:\Windows or /etc)
 loccfg_path - local config path (such as exedir or user's dir)
 defout_path - default path to writable directory to write logs and other output by

default
 temp_path - path where we can write temp files
 exedir_path - path to directory where executable resides
 userdir_path - path to the user's home directory for user-visible documents and files
 appdata_path - path to the user's preference directory for this application
 prefs_path - path to directory where all application prefs reside (not just mine)
 device_uri - URI of the device (some unique ID, usually a hardware serial number

or network derived system name)
 device_name - Name of the device hardware (such as a model name)
 user_name - name of the currently logged-in user on the host platform
 conferrpath - not defined by default, can be set to a file path where XML config

parsing error messages will be written to. Can be set to "console" to
output XML config parsing errors to the system stdout path (if such a
path exists on the platform)

 xxxx - user-defined variables (can also set to override default value of one of
the above)

/licensing license (volatile, text/code must be set every time app ist started)
 licensetext - license text
 licensecode - Writeonly: license code (setting it will recalculate all the following

status variables)
 regStatus - Readonly: TSyError status code of currently set license
 regOK - Readonly: if true, license is ok
 productCode - Readonly: product code from license

Page 64

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

 productFlags - Readonly: product flags from license
 quantity - Readonly: licensed quantity
 licenseType - Readonly: license type
 daysleft - Readonly: number of days left of expiring license or demo mode (-1

= not expiring)

/profiles Client settings profiles (persistent)
 settingsstatus - TSyError status of the settings. MUST BE CALLED AT LEAST

ONCE before opening subkeys
 overwrite - (volatile) boolean flag. In case opening settings would cause deleting

incompatible settings, this is done only if overwrite is set to 1.
 provisioningstring - Writeonly: Allows creating and modifying settings using so-called

provisioning strings. These are strings which can be created using our
free ClientConfigurator tool to package settings in a form that can be
easily delivered in various forms. One of them is writing them into
the provisioningstring value.

 checkForFeature - Writeonly. When written with a feature code (see APP_FTR_xxx in
engine_defs.h), the write operation either succeeds (=feature availa-
ble) or returns 204/ DB_NoContent (=feature not available). Note
that checkForFeature is also available in the profile to check for fea-
tures affecting only a specific profile and on the target level for featu-
res specific to a single target.

 /<profileID> Profile ID (as assigned by engine when profile is created)
 profileName - display name of the profile
 protocol - transport protocol: 0=included in URI, 1=http, 2=https, 3=wsp,

4=obex_irda, 5=obex_bt, 6=obex_tcp
 serverURI - SyncML Server URI
 URIpath - Path element appended to SyncML Server URI (e.g. in case URI is

hardcoded)
 serverUser - SyncML Server user
 serverPassword - SyncML Server password (stored in disguised form)
 transportUser - user for login at the transport level (e.g. HTTP auth)
 transportPassword - password for transport level login (stored in disguised form)
 socksHost - SOCKS proxy address
 proxyHost - HTTP proxy address
 proxyUser - user for login at the proxy
 proxyPassword - password for proxy login (stored in disguised form)
 encoding - SyncML encoding (1=WBXML, 2=XML - note that not some client

builds only support WBXML)
 syncmlvers - SyncML version to use to start session (0=automatic, 1=1.0, 2=1.1,

3=1.2)
 useProxy - If set to 1, this indicates that configured proxy server(s) should be

used
 useConnectionProxy - if set to 1, this indicates that OS-defined, connection specific proxies

should be used
 timedSyncMobile - Number of minutes for mobile timed autosync (0=none)
 timedSyncCradled - Number of minutes for cradled timed autosync (0=none)
 dangerFlags - Readonly: returns the "danger" status of the next sync, i.e. indication

when either server (DANGERFLAG_WILLZAPSERVER) or client
(DANGERFLAG_WILLZAPCLIENT) side data will be cleared
completely and replaced with the other side's content in any of the

Page 65

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

datastores currently enabled for sync. Client implementations should
check these before starting a sync and warn users appropriately. Note
that each target has also a dangerFlag which can be queried to get each
datastore's flags separately.

 checkForFeature - Writeonly. When written with a feature code (see APP_FTR_xxx in
engine_defs.h), the write operation either succeeds (=feature availa-
ble) or returns 204/ DB_NoContent (=feature not available). Note
that checkForFeature is also available in each target to check for features
specific to one target and on the profiles container level for global-
level features.

 checkForReadOnly - Writeonly. When written with a readonly flag value (see RDON-
LY_xxx in engine_defs.h), the write operation either succeeds
(=queried settings should be made readonly in the UI) or returns
204/ DB_NoContent (=queried settings should be editable in the
UI). Note that actual profile and target fields may still be technically
writable using SetValue() – checkForReadOnly is indended to give the
UI implementation the needed information to make some fields not
editable for the end user. checkForReadOnly is also available in each
target to check for readonly fields at the target level.

 readOnlyFlags - These flags can be set (usually by provisioning, see "provisionings-
tring") to make certain aspects of a settings profile read-only. See
RDONLY_xxx constants in engine_defs.h. Note that these flags
don't actually prohibit writing to settings fields, but should be queried
by UI code to using checkForReadOnly (see above). UI code should ne-
ver check readOnlyFlags directly, because depending on the engine
build some readonly conditions might exist without the correspon-
ding flag explicitly set in readOnlyFlags.

 transpFlags - 32 bit Flagword reserved for transport related settings flags.
 profileFlags - 32 bit Flagword reserved for general profile related settings flags.
 profileExtra1 - 32 bit Integer reserved for general profile related settings value.
 profileExtra2 - 32 bit Integer reserved for general profile related settings value.
 profileData - 256 bytes general purpose BLOB reserved for general profile related

persistent storage.

 /autosynclevels
 /<id> Autosync level ID, 0..2, 0=first priority, 2=least priority
 mode - Autosync mode for this level (0=IPP, 1=timed, 2=off, 3=server

alerted)
 startDayTime - minute of the day when autosync starts in this level
 endDayTime - minute of the day when autosync ends in this level
 weekdayMask - weekdays where autosync is enabled in this level (Bit 0=Sun, 1=Mon

.. 6=Sat
 chargeLevel - percentage of battery charge needed to enable autosync (0..100,

100=with AC supply only)
 memLevel - percentage of memory free needed to enable autosync (0..100)
 flags - flags reserved for future use

 /targets Targets (databases available for sync in this profile)
 /<targetID> Target ID is the <dbtypeid> as defined in the <datastore> con-

fig
 enabled - if set to 1, this datastore will be included in next sync
 forceslow - if set to 1, next sync will be a slow sync

Page 66

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

 syncmode - sync mode: 0=twoway, 1=from server only, 2=from client only
 limit1 - sync range limit (such as number of days in the past, depends on da-

tastore)
 limit2 - sync range limit (such as number of days in the future, depends on

datastore)
 extras - flags for sync range limist (depends on datastore)
 localpath - local database path (if any), to differentiate multiple instances of the

same database type
 remotepath - remote (server) database path
 localcontainer - local container name, if any (usage depends on datastore implementa-

tion)
 dbname - Readonly: name of the related <datastore> (in the XML config)
 lastSync - Readonly: time of last successful sync
 lastToRemoteSync - Readonly: time of last sync that sent data to the remote party (server)
 dangerFlags - Readonly: returns the "danger" status of the next sync, i.e. indication

when either server (DANGERFLAG_WILLZAPSERVER) or client
(DANGERFLAG_WILLZAPCLIENT) side data will be cleared
completely and replaced with the other side's content. Client imple-
mentations should check these before starting a sync and warn users
appropriately. Note that the profile has also a dangerFlag which repre-
sents all target's dangerFlags combined.

 checkForFeature - Writeonly. When written with a feature code (see APP_FTR_xxx in
engine_defs.h), the write operation either succeeds (=feature availa-
ble) or returns 204/ DB_NoContent (=feature not available). Note
that checkForFeature is also available in the profile to check for fea-
tures affecting all targets and on the profiles level for global-level
features.

 checkForReadOnly - Writeonly. When written with a readonly flag value (see RDON-
LY_xxx in engine_defs.h), the write operation either succeeds
(=queried settings should be made readonly in the UI) or returns
204/ DB_NoContent (=queried settings should be editable in the
UI). Note that actual profile and target fields may still be technically
writable using SetValue() – checkForReadOnly is indended to give the
UI implementation the needed information to make some fields not
editable for the end user. checkForReadOnly is also available at the pro-
file level.

 isAvailable - Readonly. Returns non-zero if the datastore is available for being used
(vs. only implemented, but currently blocked, e.g. because the server
side does not support the type). The UI implementation should vi-
sually show the datastore related UI in a disabled state or completely
hide it when isAvailable returns zero.

 dispName - Readonly. Returns the display name of the datastore as specified in
the XML config with <displayname>. If <displayname> is not set,
the technical name of the datastore is returned.

 lastSyncIdentifer - Readonly: Returns the identifier used by the datastore implementation
(possibly a plugin) to identify the time of last sync.

 remoteDispName - Readonly: Returns the display name of the datastore as transmitted in
the remote party's devInf (if at all contained in the devInf).

 remoteFilters - Filter expression to be passed to server (in TAF/CGI syntax format).
 localFilters - Filter expression to be used locally to synchonize only a subset of the

local data set (in TAF/CGI syntax format). Not active yet, reserved
for future use.

Page 67

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

 filterCapDesc - Readonly. Reserved for future use (will contain a description of filter
capabilities of the server for creating UI like popup menus for filter
creation).

9.3.2 Session local settings/values, accessed using
OpenSessionKey()

Session key unnamed implicit per-session key obtained by OpenSessionKey()

 connectURI - URI to use to connect to SyncML server. Note that this might be
different from the original Server URI in profile's "serverURI" as
the SyncML server might request sending requests to another URI
during a sync session.

 connectHost - This is the host (server address) part of the connectURI. This is
what is normally required to create a connection at the network
level.

 connectDoc - This is the document part of the connect URI, which is normally
required to prepare a HTTP POST request.

 contenttype - content type string to use for the HTTP "Content-Type:" header.
 localSessionID - local identification string of the current sync session.
 sessionPassword - this is a write-only value. It can be used to provide the session

password from a secure storage (like Mac OS X keychain) rather
than actually storing it in the profile settings (from where it could
be extracted by unauthorized parties).
To provide the session password via this value, it must be set im-
mediately after the initial STEPCMD_CLIENTSTART or
STEPCMD_CLIENTAUTOSTART has been successfully execu-
ted.

 /sessionvars Session context script variables (for PRO engines with scripting
only)

 <varname> - access (read and write) to any script variable defined in session
context scripts (like <sessioninitscript>). This is useful to pass extra
data back and forth between engine and database plugins or UI.

 /profile Access to current session's profile record. See /<profileID> above
for description of profile values and subkeys.

This is useful for example for database plugins to make use of pro-
file flags and settings configured for the current session.

Page 68

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

10. Error codes
This section lists the error codes that can occur (normally visible in the logs or on the console).

10.1 SyncML Status Codes

These codes are defined by the SyncML standard. For details, see
http://www.openmobilealliance.org/release_program/ds_v12.html. Note that this list is not
complete, but only contains the codes that are important for the SyncML engine.

0 No error
101 Server is busy (session limit reached)
200 OK, successful operation
201 Item added
207 Conflict resolved with merge
208 Conflict resolved - client wins
209 Conflict resolved by duplicating item
210 Deleted without archive
211 Item not deleted
212 Authentication accepted for entire session
213 Chunked item accepted and buffered (this status is sent for each non-final part

of a data item that has been split across multiple SyncML messages)
400 Bad request
401 Unauthorized (bad credentials)
403 Forbidden (e.g. attempt to write to a read-only database)
404 Object not found
405 Command not allowed
406 Optional feature not supported
407 Authentication required (no credentials found)
408 Timeout
409 Conflict, operation failed
410 Gone, requested object not here any more
412 Incomplete command
415 Unsupported media type or format
418 Object already exists
419 Conflict resolved with server data
420 Device full
500 Command failed
501 Command not implemented
503 Service unavailable
505 DTD version not supported
508 Slow sync required
509 Authentication required
510 Database error
511 Server error

http://www.openmobilealliance.org/release_program/ds_v12.html
http://www.openmobilealliance.org/release_program/ds_v12.html

Page 69

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

512 Synchronisation failed
513 SyncML Version not supported
514 Cancelled

10.2 Internal Error Codes

0 No error
10000..10999 These have the same meaning as the SyncML Status Codes (see 10.1), but they

are offset by 10000 to make clear that they were generated internally, and not
sent or received via SyncML.

20001 Bad or unknown transport protocol
20002 Fatal problem with SyncML encoder/decoder
20003 Cannot open communication
20004 Cannot send data
20005 Cannot receive data
20006 Bad content type (message received with an unknown MIME-type)
20007 Error processing incoming SyncML message (for example invalid XML or

WBXML formatting)
20008 Cannot close communication
20009 Transport layer authorisation (e.g. HTTP auth) failed
20010 Error parsing XML config file
20011 Error reading config file
20012 No configuration found at all, or not enough for requested operation (client)
20013 Config file could not be found
20014 License expired or no license found
20015 Internal fatal error
20016 Bad handle
20017 Session aborted by user
20018 Invalid license
20019 Limited trial version
20020 Connection timeout
20021 Connection SSL certificate expired
20022 Connection SSL certificate invalid
20023 incomplete sync session (some datastores failed, some completed)
20025 Out of memory
20026 Connection impossible (e.g. no network available)
20027 Establishing connection failed (e.g. network layer login failure)
20028 element is already installed
20029 this build is too new for this license (need upgrading license)
20030 function not implemented
20031 this license code is valid, but not for this product (e.g. STD license used in PRO

product, or client license in server product)
20032 Explicitly suspended by user
20033 this build is too old for this SDK/plugin
20034 unknown subsystem

Page 70

© 2004 - 2009 by Synthesis AG, Zürich, Switzerland - www.synthesis.ch

20036 local datastore not ready
20037 session should be restarted from scratch
20038 internal pipe communication problem
20039 buffer too small for requested value
20040 value truncated to fit into field
20041 bad parameter
20042 out of range
20043 external transport failure (no details known in engine)
20044 class not registered

20500..20599 These represent SIG_xxx codes in Linux versions of the server.
Unexpected SIG_xxx will generate a error code of 20500+signal_code.

20998 Internal unkown exception
20999 Unknown error

21000...21999 Database plugin module specific error codes

	Contents
	Introduction
	Overview
	Distribution Files
	SySync DBApi SDK description
	How to write a database plugin ?
	Module Handling
	Session Handling
	Datastore Handling
	The “open” section
	The “admin read” section
	The “read” section
	The “update” section
	The “admin write” section
	The “general” section
	The “close” section

	Callback calls
	The global context
	The OceanBlue / SnowWhite adapter

	SySync UIApi SDK description
	Connecting the SyncML core library via UIApi
	Using a SyncML Client Library via UIApi
	Preparation for initialisation
	Engine Init
	Acessing Settings
	Preparations before accessing settings profiles
	Editing Settings

	Running Sync Sessions

	Setup Guide
	Plug-in System for C/C++
	Plug-in System for Java
	Plug-in System for C#
	Plug-in module XML configuration
	Module naming convention
	Plugin_Info program
	UIApi C# interface

	Change History
	Changes since SDK V1.0.0.2
	Changes since SDK V1.3.0
	Changes since SDK V1.4.0
	Changes since SDK V1.5.0

	DBApi Interface description
	Function overview
	Function Documentation

	UIApi Interface description
	Functions in the UI_Call_In call-in structure
	TEngineModuleBase Class Reference
	Public Member Function Overview
	Member Function Documentation

	Settings keys supported in SyncML Client Engine
	Global settings keys - accessed using OpenKeyByPath()
	Session local settings/values, accessed using OpenSessionKey()

	Error codes
	SyncML Status Codes
	Internal Error Codes

